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Abstract
Perinatal exposure to heat and air pollution has been shown to affect the risk of preterm birth
(PTB). However, limited evidence exists regarding their joint effects, particularly in heavily
polluted regions like China. This study utilized data from the ongoing China Birth Cohort Study,
including 103 040 birth records up to December 2020, and hourly measurements of air pollution
(PM2.5, NO2, and O3) and temperature. We assessed the nonlinear associations between air
pollution and temperature extereme exposures and PTB by employing generalized additive models
with restricted cubic slines. Air pollution and temperature thresholds (corresponding to minimum
PTB risks) were determined by the lowest Akaike Information Criterion. We found that maternal
exposures to PM2.5, NO2, O3, and both low and high temperature during the third trimester of
pregnancy were independently associated with increased risk of PTB. The adjusted risk ratios
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for PTB of PM2.5, O3, NO2, and temperature at the 95th percentile against thresholds were 1.32
(95% CI: 1.23, 1.42), 1.33 (95% CI: 1.18, 1.50), 1.44 (95% CI: 1.33, 1.56) and 1.70 (95% CI: 1.56,
1.85), respectively. Positive additive interactions [relative excess risk due to interaction
(RERI)> 0] of PM2.5–high temperature (HT), O3–HT, O3–low temperature (LT) are identified,
but the interactive effects of PM2.5 and LT were negative (RERI< 0). These observed
independent effects of air pollution and temperature, along with their potential joint effects, have
important implications for future studies and the development of public health policies aimed at
improving perinatal health outcomes.

Abbreviations

ADH Antidiuretic hormone
AIC Akaike Information Criterion
API Application programming interface
BMI Body mass index
CI Confidence interval
GAM Generalized additive model
HIV Human immunodeficiency virus
NO2 Nitrogen dioxide
OT Oxytocin
O3 Ozone
PM2.5 Particulate matter⩽2.5 µm in

diameter
PTB Preterm births
RCS Restricted cubic spline
RR Risk ratio
SDG Sustainable Development Goal
SES Socioeconomic status.

1. Introduction

PTBs, defined as birth before 37 completed gesta-
tional weeks [1], accounts for 75% of perinatal mor-
tality and more than half the long-term morbidity
in both developed and developing countries [1, 2].
China has the second highest number of PTBs in
the world (>1 million per year), increasing by 1.1%
per year [3]. Better understanding of risk factors and
implementation of preventive interventions to reduce
PTB and associated adverse outcomes play a critical
role in both achieving the health aspects of the SDGs
and alleviate disease burden [4].

Previous studies have shown that perinatal expos-
ure to environmental factors, such as heat stress and
air pollution, can affect risk of PTB [5–7]. These
associations are biologically plausible as PTB has
been suggested to be a syndrome initiated by mul-
tiple mechanisms. For example, particulate matter
⩽2.5 µm in diameter (PM2.5), through the mater-
nal circulation, could trigger systemic inflammation
and oxidative stress, or induce alterations of maternal
cardiac, pulmonary, and autonomic nervous system
functions [8, 9]. As a result, fetal-maternal circulation
can be affected and fetus growth interrupted [10],
leading to PTB. Exposure to heat during pregnancy

can promote secretion of ADH and OT and trigger
contractions and PTB [11].

Under a warming climate, the intensity, fre-
quency, and duration of heatwave will enhance over
many regions, and this trend is anticipated to persist
in the coming decades [12]. Global climate change is
also likely to exacerbate air pollution and thus poses
greater threats to humanhealth, referred to as ‘climate
penalty’ [13]. It was also projected that more regions,
especially highly polluted Asia, would be exposed to
prolonged joint heatwave and high aerosol related
extremes [14, 15].

A few studies [16–18] have emphasized that
exposure to joint occurrences of weather and air
pollution extremes could exert larger health effects
than that associated with each of the individual
factors. These studies have focused mainly on mor-
tality, with very few studies exploring the interaction
between temperature and air pollution on PTB [19,
20]. However, these studies were limited to a local or
regional scale, and where air pollution is less serious
(i.e., Guangdong province in China and California in
the US). In the context of both wider ranges of expos-
ure and geographical regions, the effect of air pollu-
tion and temperature on PTB remains unexplored.

Given the wide range of exposure to both air pol-
lution and temperature across China, the associated
effects on PTB could vary across the country. Here
we provide a comprehensive analysis, with a focus on
investigating the independent and potential interact-
ive effects of exposure to temperature andmultiple air
pollutants on PTB using data from a nationwide birth
cohort study in China.

2. Materials andmethods

2.1. Study population and design
The study population consisted of participants from
the China Birth Cohort Study, which is a national-
based, prospective longitudinal mega-cohort study
aimed at investigating risk factors for birth defects
and developing strategies for their reduction. To be
eligible for participation, pregnant women had to
meet the following criteria: (1) Chinese nationality;
(2) gestational age between 6 and 13 complete weeks
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at recruitment, including both naturally conceived
pregnancies and those conceived using assisted repro-
ductive technologies; (3) intention to attend routine
antenatal examinations and deliver at the study site,
with plans to continue residing locally for at least one
year; (4) absence of notifiable infectious diseases such
as hepatitis B, syphilis, and HIV; and (5) ability to
comprehend the study and provide informed, writ-
ten consent. Participants had the option to withdraw
from the study at any stage. The recruitment pro-
cess was conducted at 38 research sites located in 17
provinces, cities, autonomous regions, and municip-
alities, covering a wide geographical representation
across China. The detailed information has been pub-
lished elsewhere [21]. For this analysis, we utilized the
cohort dataset that was updated as of December 2020.
Detailed information on recruitment and data col-
lection are presented in figure 1. The study was con-
ducted in accordancewith theDeclaration ofHelsinki
and in accordance with local statutory requirements.
The cohort study protocol was approved by the Ethics
Committee of Beijing Obstetrics and Gynecology
Hospital, Capital Medical University (Approval No.:
2018-KY-003-02).

2.2. PTB outcomes, air pollutants and ambient
temperature
Gestational age was measured in days, based on
the date of the last menstrual period in combin-
ation with confirmatory ultrasound examinations.
PTB was defined as delivery prior to 37 completed
weeks of gestation [1]. We also further defined three
trimesters of pregnancy based on the complete weeks
of gestation (1st trimester, ∼13 complete weeks; 2nd
trimester, 14–27 complete weeks and 3rd trimester,
28 complete weeks to birth) [22].

Hourly data on air pollutants, namely PM2.5,
NO2, and O3, were obtained from the China National
Environmental Monitoring Center (CNEMC) net-
work. To fully cover our study period, we used
hourly data from 2017 to 2020. Hourly O3 were
further calculated as daily maximum 8 h average
(MDA8) O3. We used hourly ground-level temper-
ature from the ERA5-land reanalysis dataset from
the European Centre for Medium-Range Weather
Forecasts at 0.1◦× 0.1◦ grids [23]. We also conduc-
ted validation analyses with ground observations to
show the accuracy of the ERA5 dataset (supplement-
ary files, figures S1–S3). We matched each parti-
cipant’s residential and work address with concen-
trations of air pollutants from the closest monitor-
ing site and with temperature from the nearest grid
and used time-weighted exposure based on working
time patterns reported in the questionnaire. Each par-
ticipant’ trimester-specific average exposures (mean

values) to air pollution and temperature were fur-
ther calculated according to the trimester timeframe
above.

2.3. Statistical analyses
To test whether the associations of daily air pollut-
ants and temperature levels (continuous variables) on
PTB were linear or nonlinear, as well as for potential
threshold effects (if any), a RCS function was applied
to each exposure variable in the GAMs, in line with
previous studies [24–26]. GAM is a flexible regres-
sion modeling approach that allows for non-linear
relationships between the predictor variables and the
outcome.

In this study, the general formula of GAM
with adjustment for covariates can be expressed
as: logit(p) = β0 + Si (x)+β1C1 +β2C2 + · · ·+
βmCm + δ+ ε, where logit(p) is the log-odds link
function to the binary outcome Y(Y = 1, if PTB or
Y = 0, if term birth), β0 is the intercept term, Si
is the non-linear spline function, β1, β2,…, βm are
the regression coefficients associated with the cov-
ariates C1, C2,…, Cm, respectively, δ represents the
random effect term and ε represents the error term,
accounting for unexplained variability in the out-
come variable.

The RCS function, with three knots was set at
the 10th, 50th, 90th percentile. The selection of these
knots was based on previous literature, and explorat-
ory analyses of the data. By using these knot locations,
we aimed to ensures that the RCS function is able
to capture non-linear patterns that may exist across
the entire exposure distribution. Details about the
RCS function are also presented in the Supplementary
Methods.

We followed the method used in previous studies
[24–26] to determine the threshold value of each
exposure variable. In brief, we first visually estim-
ated preliminary intervals of possible thresholds.
Subsequently, we iteratively fitted and obtained the
effect estimates and AIC of the model in each iter-
ation, by 0.1-unit increments in exposure variable
within the preliminary intervals. The concentrations
of air pollutants and temperature values correspond-
ing to the lowest AIC values were chosen as the
thresholds (minimum PTB concentrations of air pol-
lutants/temperature. We calculated and reported the
RRs and 95% CIs of PTB at 75th, 80th, 85th, 90th
and 95th percentiles of exposure against the threshold
concentration.

To investigate the interactive effects of air pollu-
tion and temperature, we calculated the relative excess
risk due to interaction (RERI) [27], with an RERI> 0
indicating the combined effects were greater than that
of each exposure alone (i.e., additive interaction), and
an RERI< 0 indicating negative additive joint effects.
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Figure 1. Flow chart of participant recruitment in the China Birth Cohort Study.

Attributable proportion (AP) of additive effects to
the total observed effects were calculated by RERI
divided by total effects, with 0 indicating the absence
of interactions. To calculate RERI and AP, we classi-
fied the air pollutant variables into binary variables
using the threshold value as the cut-off point, and
we used lower than threshold value as the reference
group. In light by other studies that showed both low
and high temperature (HT) extremes may be associ-
atedwith elevated risks of PTB [5, 28], we used tertiles
to classify temperature into a ternary variable (i.e.,
low, medium, and high group based on tertiles), with
medium group as the reference, in which two dummy
variables were created, namely variable low temper-
ature (LT) = 1, if temperature falls in the first ter-
tiles and LT = 0, if temperature falls in the second
tertiles (representing medium level of temperature);
and HT = 1, if temperature falls in the third tertiles
and LT= 0, if temperature falls in the second tertiles.
RERI can be calculated by creating an instrumental
variable that corresponds to the combinations of the
abovementioned binary/ternary variables. The RERI
and 95% CI calculation was done by the R package

‘interactionR’ [29].
For all regression models, we considered several

confounding factors based on the available literature
[5, 6, 24, 28, 30, 31], and formed a directed acyclic
graph (DAG) for the variables by using DAGitty [32].
The covariates included maternal age, ethnicity, edu-
cation level, income level, pre-pregnancy BMI, sugar
and alcohol consumption, noise, sex of newborn and
environmental tobacco exposure status (supplement-
ary figure S4). To adjust the models with a minimum
yet sufficient set of covariates, the selection of covari-
ates was based on the DAG diagram generated using

DAGitty and supplemented by previous studies. The
analyses were adjusted for sex of newborn, mater-
nal age, ethnicity, education, income, environmental
tobacco exposure, use of air purifier, proximity to
main roads and noise disturbance.

To test the robustness of our results, two-pollutant
models were additionally fitted to evaluate the poten-
tial confounding effects of the co-linearity among
air pollutants and temperature. To test whether the
effects were biased by the difference in pollutant levels
in north/south China, we replicated our main ana-
lyses using data from north or south China, separ-
ately. All statistical analyses were performed using R
4.1.1 and the significance level was at two-tailed prob-
ability<0.05.

3. Results and discussion

3.1. Characteristics of participants and exposure to
air pollutants and ambient temperature
Table 1 summarizes the maternal covariates, includ-
ing birth outcomes and environmental exposures,
stratified by PTB. The average gestational age at deliv-
ery was 274.6 d (39.2 weeks), with 6.2% (n = 6388)
of newborns being born preterm. Compared with
term birth, mothers who delivered preterm were
more likely to be slightly older (P < 0.001), with
higher pre-pregnancy BMI levels (P < 0.001), and
of lower socioeconomic status (SES), such as income
(P < 0.001) and education (P < 0.001). No signific-
ant differences were observed in ethnicity (P= 0.16),
or self-reported proximity to main road (P = 0.764)
or self-reported noise disturbance (P = 0.966).

During the study period, the participants’ aver-
age exposure to PM2.5, O3, and NO2 in third trimester
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Table 1. Characteristics of participants in the study.

Mean± SD, n (%)

Total Term birth Preterm birth

Variable (n= 103 040) (n= 96 652) (n= 6388) Pa

Mothers
Age (years) 30.7± 5.0 30.7± 5.0 31.2± 4.9 <0.001
Pre-pregnancy BMI (kg m−2) 21.8± 3.6 21.8± 3.6 22.1± 3.7 <0.001
Gestational age (days) 274.6± 11.8 276.6± 7.9 243.7± 16.5 <0.001
Ethnicity 0.16
Han 85 943 (83.4%) 80 574 (83.4%) 5369 (84.0%)
Others 17 097 (16.6%) 16 078 (16.6%) 1019 (16.0%)
Education <0.001
Middle High school or lower 56 125 (54.5%) 52 416 (54.2%) 3709 (58.1%)
Higher education 46 915 (45.5%) 44 236 (45.8%) 2679 (41.9%)
Annual family income (CNY) <0.001
⩽100 000 31 415 (30.5%) 29 275 (30.3%) 2140 (33.5%)
100 000–400 000 61 352 (59.5%) 57 673 (59.7%) 3679 (57.6%)
⩾400 000 10 273 (10.0%) 9704 (10.0%) 569 (8.9%)
Environmental tobacco exposure 41 270 (40.1%) 38 632 (40.0%) 2638 (41.3%) 0.037
Working time (hours/week) 39.9± 10.9 39.9± 11.0 39.6± 10.6 0.037
Sex of newborn (boys) 53 650 (52.1%) 50 085 (51.8%) 3565 (55.8%) <0.001

Environmental factors
Use of air purifier (yes) 23 132 (22.4%) 21 821 (22.6%) 1311 (20.5%) <0.001
Close to main road (yes) 32 685 (31.7%) 30 670 (31.7%) 2015 (31.5%) 0.764
Noise disturbance (yes) 5924 (5.7%) 5558 (5.8%) 366 (5.7%) 0.966
PM2.5 (µg m

−3)b 37.7± 17.9 37.8± 17.7 36.2± 20.6 <0.001
MDA8 O3 (µg m

−3)b 96.1± 37.0 96.1± 37.0 95.5± 38.5 0.242
NO2 (µg m

−3)b 31.6± 11.8 31.7± 11.6 30.2± 13.8 <0.001
Temperature (◦C)b 16.4± 9.4 16.4± 9.4 16.7± 9.7 0.001
a P-values were derived using two-sample t-tests for continuous variables and chi-squared test for categorical variables.
b Exposure level in the third trimester.

Abbreviations: BMI, body mass index; CNY, Chinese yuan; MDA8 O3, daily maximum 8-hour average ozone; NO2, nitrogen dioxide;

PM2.5, particulate matter⩽2.5 µm; SD, standard deviation.

was 37.7 (standard deviation, SD:17.9) µg m−3, 96.1
(SD:37.0) µg m−3, and 31.6 (SD:11.8) µg m−3,
respectively. Slightly higher concentrations of PM2.5

and NO2 were observed among term birth cases
(P < 0.001) while higher temperature levels were
observed among PTB cases (P = 0.001). As presen-
ted in table S1 and figure S5, temperature was neg-
atively correlated with air pollutants levels except for
O3, and PM2.5 and NO2 concentrations were posit-
ively correlated, while were both negatively correlated
with O3 level.

3.2. Associations between temperature, air
pollution and PTB
The associations between exposure to temperature,
air pollutants and PTB were not statistically sig-
nificant during the first and second trimester of
pregnancy (figures S6 and S7), except for expos-
ure to HT during second trimester. However, for
the third trimester, consistent nonlinear associations
with threshold effects were detected (figure 2).
Increased concentrations of PM2.5, O3, NO2, and
temperature, as shown at 75th to 95th percentiles
above thresholds were associated with elevated risks

of PTB (table 2). The analysis for other air pol-
lutants provided by CNEMC were also performed
and results were included in the Supplementary
Materials (figure S8).

Threshold effects have been reported by several
previous studies. For example, Fleischer et al [30]
used the World Health Organization Global Survey
onMaternal and Perinatal Health database and found
that PM2.5 ⩾ 36.5 µg m−3 was associated with sig-
nificantly higher risks of PTB, compared with lower
exposure (<36.5 µg m−3) in China. Another study
from Spain revealed that using threshold of NO2 at
46.2 µg m−3 could differentiate the elevated risks of
PTB [33].

Several studies have shown that exposure to both
heat and cold temperature extremes increase the risks
of PTB. A study in Brisbane, Australia, detected U-
shaped associations between daily average temper-
ature and PTB, with similar RRs observed for LT
and HT in the third trimester of pregnancy [28].
Another study from China indicated 17.9% and 10%
higher risks of PTB when exposed to extreme cold
and extreme heat, respectively, during the last four
weeks of pregnancy [6]. It is worthy of note that
when we considered this association separately in
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Figure 2. Associations between air pollutants, temperature and preterm birth.
Footnote: The RRs were adjusted for sex of newborn, maternal age, ethnicity, education, income, environmental tobacco exposure,

use of air purifier, proximity to main roads and noise disturbance.

Table 2. The risks of preterm birth at 75th to 95th percentiles of air pollution against the minimum preterm birth concentration of air
pollution (threshold) in single-pollutant models.

Adjusted RR (95% CI)a

Variable Threshold
75th vs.
threshold

80th vs.
threshold

85th vs.
threshold

90th vs.
threshold

95th vs.
threshold

PM2.5

(µg m−3)
47.3 47.4 51.9 56.2 62.4 74.1

1.00 (1.00, 1.01) 1.00 (1.00, 1.01) 1.04 (1.01, 1.06) 1.11 (1.07, 1.15) 1.32 (1.23, 1.42)
MDA8
O3

(µg m−3)

122.3 126.0 134.5 142.9 151.1 160.3

1.07 (0.96, 1.18) 1.10 (1.00, 1.22) 1.16 (1.05, 1.29) 1.23 (1.11, 1.38) 1.33 (1.18, 1.50)
NO2

(µg m−3)
36.9 40.4 42.9 45.3 47.8 51.6

1.00 (1.00, 1.00) 1.03 (1.02, 1.05) 1.10 (1.07, 1.13) 1.21 (1.16, 1.27) 1.44 (1.33, 1.56)
T (◦C) 18.4 24.5 25.3 26.0 26.7 27.7

1.06 (1.04, 1.07) 1.15 (1.12, 1.18) 1.27 (1.22, 1.32) 1.42 (1.34, 1.51) 1.70 (1.56, 1.85)
a Adjusted for sex of newborn, maternal age, ethnicity, education, income, environmental tobacco exposure, use of air purifier,

proximity to main roads and noise disturbance.

Abbreviations: CI, confidence interval; MDA8 O3, daily maximum 8 h average ozone; NO2, nitrogen dioxide; PM2.5, particulate matter

⩽2.5 µm; RR, risk ratio; T, temperature.
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north and south China, we observed higher threshold
values in north than south, for instance, 52.2 µg m−3

vs. 24.5 µg m−3 for PM2.5, 123.0 µg m−3 vs.
117.7 µg m−3 for MDA8 O3 (figures S9–S11). The
overall patterns were similar with an except that cold
temperature extremes seemed to pose higher adverse
effects onPTB in south than northChina (figure S12).
This could be due partially to the presence of central
heating service in northChina but not in southChina.

Previous studies have shown some inconsistencies
in the association between air pollution or temperat-
ure and PTB across the three trimesters of pregnancy.
Several studies have reported significant associations
between air pollution and PTB during the first and
third trimesters. For instance, Huynh et al [34] found
that high total pregnancy PM2.5 exposure was asso-
ciated with PTB, and this association remained con-
sistent during the first month of pregnancy and the
last two weeks of pregnancy. Liu et al also repor-
ted increased risks of PTB associated with air pol-
lutants during the first and third trimesters [25].
But a study in China identified a significant effect
of outdoor air pollution only with 8-week exposure
before PTB [35]. Nevertheless, some studies repor-
ted insignificant associations for the third trimester
[36–38]. Similar inconsistency also exists in stud-
ies investigating the linkage between temperature
and PTB [7]. These inconsistent findings regarding
the critical exposure trimester during pregnancy can
be attributed to the heterogeneity in study popula-
tions, variation in exposure assessment and differ-
ent risk factors involved. Further investigation on the
trimester-specific effects of air pollution and temper-
ature on PTB is warranted.

The shapes of the exposure-response functions
are essential in assessing disease burden and health
benefits of tackling air pollution and climate change.
Previous studies examining the effects on mortal-
ity revealed approximately linear associations within
relatively narrow ranges of air pollution exposure
[39], but nonlinear associations for wider air pol-
lution exposure ranges that include high levels of
air pollution [40]. The threshold effects could be
explained partially by individual susceptibility, dur-
ation and intensity of exposure and other biolo-
gical mechanisms. Recent studies have suggested that
exposure to air pollution can induce systemic oxid-
ative stress [41] and molecular biological damages
[42]. This can occur through various mechanisms,
including the generation of reactive oxygen species
(ROS) [43] in the body and epigenetic changes such
as DNA methylation. Both heat and cold extremes
can also increase oxidative stress [44, 45]. Initially,
these molecular damages may be subtle and not
immediately result in observable macro symptoms,
observable outcomes or acute responses from the
body. The body’s inherent repair and compensatory
mechanisms might mitigate the damages caused by

these environmental exposures. However, when the
exposure to air pollution is prolonged or the dam-
ages accumulate beyond the body’s capacity for repair
and compensation, the adverse health outcomes may
become evident. The nonlinear associations between
environmental exposure and health outcomes can
be partially explained by the accumulated damage
and disruption to biological processes over time.
In this context, the nonlinear association observed
in our study may be a result of the cumulative
effects of exposures below a certain level. However, in
terms of actual health impacts (including the subtle
changes unobserved) caused by the exposures, using
the threshold values as reference levels can possibly
lead to underestimation of the health risk. However,
the lack of evidence onPTBprevented us from further
comparing the observed patterns. Thus, the results
should be interpreted with caution. Future studies
investigating both the exposure-response associations
and potential interactive effects of air pollution and
temperature are warranted.

3.3. Additive interactions between air pollution
and temperature
We observed positive additive interaction of PM2.5–
HT, O3–HT and O3–LT, but the additive effects of
PM2.5 and LT were negative (RERI < 0), as shown in
table 3. The results from adjusted models indicated
that approximately 48% (RERI= 0.99, 95% CI: 0.29,
1.69), 17% (RERI = 0.16, 95% CI: 0.12, 0.20) and
7% (RERI = 0.07, 95% CI: 0.03, 0.10) of the excess
risks of the total observed effects could be attributed
to additive interactions of PM2.5–HT,O3–LT, andO3–
HT, respectively.

It is plausible that HT could act synergistically
with PM2.5 to affect health. Previous studies have
shown that PM toxicitymay increasewith higher tem-
perature, and elevated temperature may increase the
uptake of PM2.5 in human body through elevation
in minute ventilation and skin blood flow [46]. In
addition, the observed pattern of PM2.5–LT could also
be partially explained by behavioral changes [20], as
either higher PM2.5 level [47] and cold temperatures
[48] to be negatively associated with outdoor phys-
ical activity, thus resulting in less actual exposure to
ambient PM2.5.

Under both low and HT conditions, O3 showed
significant additive effects with temperature on PTB,
with approximately 10% excessive additive effects
under LT condition, compared to HT condition.
Link between heat exposure and PTB has been pre-
viously suggested to be attributed to dehydration
(via prostaglandin or OT release), altered blood
viscosity [7], and premature rupture of membranes
triggered by HT [49]. Increase in oxidative stress
and inflammatory markers following exposures to
high or low ambient temperatures may also play an
important role [50]. As an oxidant, O3 could increase
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Table 3. Relative excess risk (95% CI) and attributable proportion (95% CI) due to interaction of temperature and air pollutant
exposure on preterm birth.

RERI (95% CI) AP (95% CI)

Variable Adjusteda Crude Adjusteda Crude

PM2.5–LT −0.43 (−0.65,−0.20) −0.43 (−0.66,−0.21) −0.48 (−0.74,−0.22) −0.49 (−0.75,−0.23)
PM2.5–HT 0.99 (0.29, 1.69) 0.92 (0.25, 1.59) 0.48 (0.30, 0.66) 0.46 (0.28, 0.64)
MDA8 O3–LT 0.16 (0.12, 0.20) 0.13 (0.09, 0.17) 0.17 (0.13, 0.21) 0.13 (0.10, 0.17)
MDA8 O3–HT 0.07 (0.03, 0.10) 0.07 (0.04, 0.11) 0.07 (0.03, 0.10) 0.07 (0.03, 0.10)
a Adjusted for sex of newborn, maternal age, ethnicity, education, income, environmental tobacco exposure, use of air purifier,

proximity to main roads and noise disturbance.

Abbreviations: AP, attributable proportion; CI, confidence interval; HT, high temperature; LT, low temperature; MDA8 O3, daily

maximum 8 h average ozone; PM2.5, particulate matter⩽2.5µm; RERI, relative excess risk due to interaction; RR, risk ratio.

oxidative and inflammatory stress in human body
[51], thus acting synergistically with low and/or HT
extremes. In addition to the biological mechanisms,
HT is a well-documented factor that favor form-
ation of O3 through photochemical reactions [52],
whereas under certain conditions (i.e., a stagnant,
high-pressure, low wind speeds, etc), LT during cold
seasons was also reported to trigger photolytic O3

production [53], leading to more commonly co-
occurrence of O3 and temperature extremes.

3.4. Sensitivity analyses
The results were consistent when adjusted for another
pollutant (i.e., double-pollutant models). Effects
of PM2.5 was independent of NO2 (figure S13),
although the detected thresholds for each expos-
ure changed slightly. The sensitivity analysis using
double-pollutant models showed that the health
effects of PM2.5 and O3 on PTB appeared independ-
ent of temperature, and vice versa. In addition, the
observed additive interactions between both temper-
ature and air pollution exposures indicate potentially
higher risk of PTB than observed alone. Nevertheless,
future studies are also warranted to examine and val-
idate the joint effect of air pollutants with temper-
ature extremes, as both intense heat events and cold
temperature would be more frequent in the context
of global warming [54].

3.5. Limitations
There are also several limitations to this study. First,
we focused on the associations between exposure to
air pollutants and extreme temperature specifically
in the late pregnancy period, particularly the third
trimester. By examining this relatively short-term
exposure window, the potential influence of short-
term exposure on PTB outcomes might be minim-
ized. Although our study design aimed to focus on
the specific period of late pregnancy to minimize the
potential confounding by short-term exposure, we
acknowledge that these sub-acute effectsmay still play
a role in the associations observed. Future research
should consider examining both short-term and
longer-term exposures to gain a more comprehensive
understanding of the complex relationships between

air pollutants, temperature, and adverse pregnancy
outcomes. Second, as the COVID-19 lockdown took
place in our study period, behavioral change might
have potential influence on the observed associations.
Future research is needed to explore the interplay
between environmental exposures, pandemic-related
factors, and their collective impact on pregnancy out-
comes. Another important consideration is that while
we employed the term ‘threshold’ to describe and
analyze the observed nonlinear associations, it is cru-
cial to note that this does not imply the existence
of an ‘optimal’ air pollutant concentration greater
than zero. We also observed increased level of risk
below the threshold values, whichmight be caused by
residual confounding. Therefore, the interpretation
of these threshold values should be approached with
caution andwithout assuming a biologically plausible
optimal concentration.

In conclusion, this study found that maternal
exposure to higher levels of PM2.5, NO2, O3, and
both low and HT were independently associated with
increased risk of PTB. Positive additive interaction
effects were observed between PM2.5 and–HT and
between O3 and–HT and LT conditions. Our results
may highlight the significant of adaptation of health
measures and also the co-benefits of tackling air pol-
lution and mitigating global warming.
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