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Abstract: The representation of aerosols in climate–chemistry models is important for air quality and
climate change research, but it can require significant computational resources. The objective of this
study was to improve the representation of aerosols in climate–chemistry models, specifically in the
carbon bond mechanism, version Z (CBMZ), and modal aerosol modules with three lognormal modes
(MAM3) in the WRF-CAM5 model. The study aimed to enhance the model’s chemistry capabilities
by incorporating biomass burning emissions, establishing a conversion mechanism between volatile
organic compounds (VOCs) and secondary organic carbons (SOCs), and evaluating its performance
against observational benchmarks. The results of the study demonstrated the effectiveness of the
enhanced chemistry capabilities in the WRF-CAM5 model. Six simulations were conducted over the
western U.S. and northeastern Pacific region, comparing the model’s performance with observational
benchmarks such as reanalysis, ground-based, and satellite data. The findings revealed a significant
reduction in root-mean-square errors (RMSE) for surface concentrations of black carbon (BC) and
organic carbon (OC). Specifically, the model exhibited a 31% reduction in RMSE for BC concentrations
and a 58% reduction in RMSE for OC concentrations. These outcomes underscored the importance
of accurate aerosol representation in climate–chemistry models and emphasized the potential for
improving simulation accuracy and reducing errors through the incorporation of enhanced chemistry
modules in such models.

Keywords: atmospheric chemistry; air quality; climate–chemistry model

1. Introduction

Modeling atmospheric chemistry is central to global issues such as air quality and
climate change, which have direct consequences on human livelihoods. Proper numerical
representation of atmospheric chemistry calls for accurate simulations and coupling of
meteorological and chemical processes [1]. The weather research and forecasting (WRF)
model [2] coupled with chemistry (WRF-Chem) [3] has wide-ranging applications and
demonstrable reliability in both research and forecasting areas of atmospheric chemistry.
The application of WRF-Chem includes, but is not limited to, air quality predictions [4],
future climate–chemistry projections [5,6], meteorology–pollution interactions [7], aerosol–
cloud interactions [8,9], atmospheric energy budget investigations [10], and the characteri-
zation of biomass burning [11].
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Atmospheric chemistry simulations carried out using WRF-Chem are sensitive to
the selection of the chemistry parameterization schemes. In WRF-Chem, the chemistry
parameterization schemes consist of multiple modules with different treatments for the
gas, aerosol, and aqueous phases [3,12]. For each phase, the treatment and processing
are represented by individual modules. Depending on the desired complexity, one may
choose a chemistry suite of modules to cover all or some of the three phases [13]. For
example, a bulk aerosol-only module, Goddard ozone chemistry aerosol radiation and
transport (GOCART) [14], has been implemented into WRF-Chem without gas-phase
ozone chemistry (chem_opt = 300), including only 18 chemical species. In contrast, a suite
consisting of the model for ozone and related tracers (MOZART) [15] for gases and the
model for simulating aerosol interactions and chemistry (MOSAIC) [16] for aerosols with
eight sectional bins (chem_opt = 202) simulates interactions among all three phases. As
one of the most complicated chemistry configurations in the current WRF-Chem model,
MOSAIC could track as many as 143 gas species and all major aerosols, including sulfate,
nitrate, ammonium, black carbon (BC), organic carbon (OC), mineral dust, and sea spray
aerosols, with more than 300 reactions [15].

There is a tradeoff between model comprehensiveness and computational efficiency [17].
More complex chemistry parameterization schemes that consider additional species and
reactions provide realistic representations of atmospheric chemistry [18]. However, these
comprehensive modules are less practical for large-scale or long-term simulations due to
their high computational demands, limiting their ability to characterize chemistry at detailed
levels [19]. High spatial resolution in regional models to capture fine-scale features such as
convective storms and interactions with fire-emitted aerosols increases computational costs
and imposes constraints on the complexity of the chemistry modules used [20]. For instance,
doubling the horizontal resolution in climate–chemistry models may result in an eightfold
increase in computational requirements [21].

Efforts have been made to develop simplified representations of aerosol and chemistry
processes for global and regional models while maintaining high accuracy. One example is
the modal aerosol module (MAM) [22], initially developed for the community atmosphere
model, version 5 (CAM5), which is part of the widely utilized community earth system
model, version 1. MAM effectively handles major aerosol species such as BC, OC, sulfate,
sea salt, and dust with reasonable accuracy. The use of modal or bulk aerosol approaches
in regional climate models such as WRF dates to as early as 2004 [23].

A version of the MAM scheme, known as MAM3, combined with the CAM5 physics
suite, was implemented in WRF-Chem by Ma et al. [24]. This version, referred to as WRF-
CAM5, demonstrated consistently low biases in simulations of chemical species and aerosol
optical depths (AODs) compared to observations in East Asia [25,26]. Notably, during the
2008 boreal spring DC-8 flight campaign in Alaska for Arctic research of the composition
of the troposphere from aircraft and satellites, the simulated surface BC concentrations
in WRF-CAM5 were up to three orders of magnitude lower than the observations, which
Ma et al. [24] attributed to the coarse horizontal grid of the model. Increasing the model
resolution to 10 km improved the agreement with observations but still resulted in mean
concentrations two orders of magnitude lower. Nevertheless, previous studies have shown
that WRF-CAM5 is a computationally efficient framework for high-resolution regional
aerosol and climate simulations. Since it shares the same aerosol chemistry and atmospheric
physics packages as global climate models such as CESM, WRF-CAM5 can also be utilized
to investigate the impact of resolution on aerosol simulations and aerosol–cloud interactions,
accounting for unresolved processes in global models [24].

This study aims to evaluate and improve the simulation of aerosols and chemistry
in WRF-CAM5. Specifically, we focus on the western United States and the adjacent
northeastern Pacific Ocean, motivated by the need to study the off-coast aerosols originating
from both anthropogenic emissions and biomass burning which play an essential role in the
interactions with marine stratus and stratocumulus clouds [27]. The WRF-CAM5 version
used in this study, as an option in the released NCAR WRF-Chem 3.9.1.1, includes the gas-
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phase chemistry module choice of CBMZ along with other aerosol-phase chemistry module
choices of MAM3 (see Table 1). The only differences between WRF-CAM5 and other WRF-
Chem setups are the choice of chemistry suites (CBMZ/MAM3, setting “chem_opt = 503”
in the WRF-Chem) and the accompanying chemical and physical schemes. For detailed
chemical and physical schemes, readers are referred to Section 2 and Table 1.

Table 1. Physical and chemical schemes used in the WRF-CAM5 (with CBMZ-MAM3) simulations
and the WRF-Chem (with MOZART-MOSAIC) simulations.

Physical or Chemical
Scheme

WRF-CAM5 with
CBMZ-MAM3

WRF-Chem with
MOZART-MOSAIC

Gas-phase chemistry CBMZ MOZART
Aerosol MAM3 MOSAIC (4-bins)
Photolysis Fast-J Madronich F-TUV

Emissions Read-in Scheme RADM2 gas emissions to
CBMZ with MAM3 aerosols MOZART + aerosol emissions

Microphysics
CAM5: Morrison and
Gettleman (Morrison et al.,
2008 [28])

Morrison double-moment
(Morrison et al., 2009 [29])

Cumulus CAM5: Zhang–McFarlane Grell–Freitas

Planetary Boundary Layer CAM5: University of
Washington Yonsei University

Similar to Ma et al. [24], the initial test runs using the default WRF-CAM5 indicate
abnormally low aerosol concentrations and unrealistic spatial distributions, particularly
over regions influenced by biomass burning. Here, we aim to improve the CBMZ-MAM3
chemistry modules in the WRF-CAM5 model to address two deficiencies identified:

(1) The biomass burning emissions are completely ignored for both aerosol-phase (MAM3)
and gas-phase (CBMZ) chemistry;

(2) The mechanism that converts VOC to SOC is not included.

While the default WRF-CAM5 does not include the VOC-to-SOC pathway, more than
50% of the total aerosols in urban areas may be SOCs [30], and previous observations for
total aerosol composition have indicated a dominant role of secondary sources for total
organic carbon [31]. SOCs are formed by the oxidation of VOCs [32]. This poses an inherent
challenge for numerical modeling because there are many different types of VOCs (>103).

In this study, the model improvement incorporated for treating the SOC formation
follows the implementation of MAM3 for secondary organic aerosol in the global model
CAM5 [22]. The implementation of MAM3 in the WRF framework will allow us to evaluate
the same aerosol schemes used by CAM but at finer spatial resolutions that are comparable
to the observational dataset, making it feasible to transfer lessons learned about aerosol
simulations and interactions with clouds from the high-resolution regional studies to the
coarser-resolution global models. The improved WRF-CAM5 with MAM3 would thus
provide a useful tool for assessing the global model parameterizations, in addition to the
benefit in computational efficiency from the more sophisticated WRF-Chem schemes.

We describe the detailed model setup in Section 2 and our modifications in Section 3. In
Section 4, we validate the original and enhanced simulations. The simulations are presented
in a step-by-step manner to shed light on the relative importance of various progressive
implementations of the proposed approach. The simulated aerosol distributions off the
western coast of the US will be analyzed to demonstrate the performance of the updated
models. We then conclude this study in Section 5.

2. Methods
2.1. Model

We used version 3.9.1.1 of the WRF model [33] coupled with chemistry [3], and CAM5
for the physics mechanism as the base model of WRF-CAM5 in this study. Longwave and
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shortwave radiation processes are parameterized by the rapid radiative transfer model
(RRTM) developed for general circulation models (RRTMG) [34]. The land-surface pro-
cesses were simulated by the unified Noah model [35].

The main objective of this study is to improve the coupled CBMZ-MAM3 chemistry
scheme [22,36] in WRF-CAM5 as a workable configuration for simulating aerosols and
chemistry over the western US and the adjacent northeastern Pacific. MAM3 is imple-
mented similarly to as in global modeling studies [22]; it simulates major aerosol species
such as BC, OC, dust, sulfate, and sea salt, but does not include nitrate chemistry. Addi-
tionally, MAM3 distinguishes between hydrophilic and hydrophobic species and there is
an aging process that transforms hydrophobic BC/POC to hydrophilic BC/POC [22], and
the time for such a process is prescribed to be 1–2 days. In WRF-CAM5, MAM3 has been
linked to CBMZ gas-phase chemistry, a carbon-bond mechanism that includes 73 chemical
species and 237 reactions (chemistry option 503) [23].

We also consider MOZART-MOSAIC [15,16], the most comprehensive and expensive
chemistry scheme in WRF-Chem, as a benchmark for comparison with CBMZ-MAM3.
MOSAIC simulates most major aerosol species, such as BC, sulfate, ammonium, OC (both
primary and secondary), nitrate, and chlorides (Cl), with either four or eight size bins. This
study uses the four-bin version of the MOZART-MOSAIC suite, which involves 143 gas-
phase species with 347 reactions. In contrast, CBMZ-MAM3 uses the bulk mechanism and
approaches the detailed chemical species with the lumped-group mechanism for most of
the gas-phase chemistry [22]. Therefore, one would expect a more realistic simulation with
MOZART-MOSAIC, given its more comprehensive representation of chemical processes.
This notion will be tested in our simulations.

Ideally, we want to use the same physical schemes for the two simulations to isolate the
chemistry impact, but this will result in chemistry–physics compatibility issues that either
cause model errors or yield unrealistic simulations. The detailed model configurations are
shown in Table 1, which summarizes the key differences between the two configurations.
For the CBMZ-MAM3 simulation, the planetary boundary layer (PBL) processes are pa-
rameterized using the University of Washington shallow convection and moist turbulence
schemes [37] as in CAM5. For the MOZART-MOSAIC simulation, we chose the Yonsei
University PBL [38]. For the cloud microphysics scheme, the CBMZ-MAM3 simulation
uses the CAM5 Morrison–Gettelman scheme [29], and the MOZART-MOSAIC simulation
adopts the Morrison two-moment scheme [28]. Furthermore, the photolysis scheme for the
CBMZ-MAM3 suite is coupled with Fast-J photolysis [39], and the photolysis option for
the MOZART-MOSAIC simulation is fast troposphere ultraviolet–visible [40].

2.2. Simulations

The simulation domain spans from 180◦ to 93◦ W and 9◦ to 55◦ N (Figure 1) with 27 ver-
tical layers up to 100 hPa. The horizontal grid spacing is uniformly set to 36 km × 36 km. A
series of 1-month simulations (from 1 June to 30 June 2013) is used for the model assessment,
which overlaps with the duration of the marine atmospheric radiation measurement (ARM)
global energy and water cycle experiment (GEWEX)–cloud system study (GCSS)–Pacific
cross-section intercomparison investigation of clouds campaign (MAGIC; see Section 2.3.4).

The meteorological initial and boundary conditions were obtained from the 6-hourly
National Centers for Environmental Prediction final analysis (NCEP-FNL). The simulated
meteorological conditions were nudged to NCEP-FNL every 6 h; the chemical initial
and boundary conditions were obtained from the global simulations of the community
atmosphere model with chemistry, version 5 [41]. The nudging domain is the entire model
domain shown in Figure 1. Vertically, the nudging is performed for model layers above the
PBL. The meteorological variables nudged are winds, temperature, and the mixing ratio of
water vapor.
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Figure 1. Surface temperatures in the (a) WRF-Chem simulation and (b) MERRA-2 products. The
ship track of the MAGIC campaign is shown in (a). The figure shows the entire domain of the
simulation. Precipitation (c) simulated by WRF-Chem and (d) from TRMM observations. White areas
in (c,d) represent the region not covered by TRMM. Color bars are in log scale.

For anthropogenic emissions from the continental United States, we used the U.S.
Environmental Protection Agency (EPA) national emissions inventory (NEI) [42]. For
the rest of the model domain outside the continental United States, we used version 2
of the emission database for global atmospheric research, developed as a part of hemi-
spheric transport of air pollution (EDGAR-HTAP v2) [43]. EPA-NEI has a spatial resolu-
tion of 12 km × 12 km, and EDGAR-HTAP has a spatial resolution of 0.1◦ × 0.1◦. Both
datasets were re-gridded to the model resolution over the simulation domain using a
mass-conserving emissions pre-processor. For the dust scheme, we use dust emissions
coupled with MOSAIC and the modal aerosol dynamics model for Europe/secondary
organic aerosol model (MADE/SORGAM).

The latest EPA-NEI inventory available is for 2014 (a 1-year difference from our
simulation year), and the latest EDGAR-HTAP emissions were for 2010 (a 3-year difference).
EPA emissions have diurnal cycles and are distinguished by weekdays and weekends,
assuming that weekday emissions are stronger in urban areas than on weekends (EPA,
2018). Therefore, we adjusted the calendar and ensured that the adopted emissions follow
the 2013 weekday and weekend patterns. We mapped the EPA-NEI emissions to the model
grids by using the sparse matrix operator kernel (SMOKE) modeling system to yield hourly
emission input data. The EDGAR-HTAP emissions include diurnal cycles only (as an hourly
dataset) without any weekday–weekend contrast and do not require any adjustments.

For biomass burning emissions, we used the emissions from the fire inventory from
NCAR (FINN) [44], a widely used satellite-based fire-related emissions inventory with a
horizontal resolution of 1 km × 1 km with hourly updates. FINN has speciated emissions in-
cluding BC, OC, CO, VOCs, etc. For biogenic emissions, we used the model of emissions of
gases and aerosols from nature (MEGAN) [45], which calculates biogenic emissions online
within the model at every time-step using the model-simulated environmental conditions.
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In addition to using the default level of emissions in the published datasets, we also
performed a sensitivity simulation by increasing both anthropogenic and biomass burning
aerosol and VOC emissions by a factor of 3.

2.3. Observations

We assessed the model performance by comparing the model simulations against
ground-based observations, shipboard measurements, satellite retrievals, and reanalysis
products. The detailed data sources and variables used for model assessment are shown
in Table 2.

Table 2. Sources of observations for evaluation.

Data Source Data Source Links Variables Provided

Aerosol robotic network
(AERONET)

https://aeronet.gsfc.nasa.gov/
accessed on 20 June 2023 AOD

Interagency monitoring of
protected visual environments
(IMPROVE)

http://vista.cira.colostate.edu/Improve/
accessed on 20 June 2023

surface concentrations of BC
and OC

Environmental Protection Agency
(EPA)

https://www.epa.gov/aqs
accessed on 20 June 2023

surface temperatures;
surface concentrations of CO

The modern-era retrospective
analysis for research and
applications, version 2
(MERRA-2)

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
accessed on 20 June 2023

surface temperatures;
surface concentrations of BC,
CO, and OC;
AOD

Tropical rainfall measuring
mission (TRMM)

https://gpm.nasa.gov/data/directory
accessed on 20 June 2023 precipitation

Cloud–aerosol lidar and infrared
pathfinder satellite observations
(CALIPSO) based on SODA
algorithm

https://www-calipso.larc.nasa.gov/
accessed on 20 June 2023 AOD

MAGIC ship campaign for
June 2013

https://www.arm.gov/research/campaigns/amf2012magic
accessed on 20 June 2023 surface temperatures; AOD

2.3.1. MERRA-2 Reanalysis Product

We used modern-era retrospective analysis for research and applications, version 2
(MERRA-2) [46] to validate the simulated meteorology, surface concentrations of chemical
species, and column aerosol optical depth (AOD). MERRA-2 assimilates the AOD from
both satellite platforms (e.g., MODIS, AVHRR, and MISR) and ground-based measure-
ments (AERONET) [47]. Studies have found generally acceptable AOD agreements among
MERRA-2, satellite products, and ground-based measurements [22,48,49]. Although, as
an observationally constrained reanalysis product, MERRA-2 should not be considered
the ground truth, it has been tested for authenticity in our study domain [47,50]. Because
reanalysis products are spatially complete, they enable us to conduct model evaluations for
large-scale spatial patterns.

2.3.2. Ground Observations from the EPA, Aerosol Robotic Network, and Interagency
Monitoring of Protected Visual Environments

In addition to the reanalysis products, we also validated the meteorology and chem-
istry against ground-based observations representative of urban, remote, and biomass-
burning-influenced areas.

For both the surface temperature and CO mixing ratios, we used the EPA air quality
system (AQS) for evaluation [51]; the AQS has been extensively applied for both meteoro-
logical and chemical evaluations in our study domain [52,53]. We selected six urban sites
within the domain for model evaluation: Irvine, California; San Diego, California; Salt Lake
City, Utah; Denver, Colorado; Seattle, Washington; and Phoenix, Arizona.

The simulated AOD results are also compared to the aerosol robotic network
(AERONET) [54] from the National Aeronautics and Space Administration (NASA).

https://aeronet.gsfc.nasa.gov/
http://vista.cira.colostate.edu/Improve/
https://www.epa.gov/aqs
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://gpm.nasa.gov/data/directory
https://www-calipso.larc.nasa.gov/
https://www.arm.gov/research/campaigns/amf2012magic
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AERONET is a ground-based remote-sensing aerosol network that uses sun- and sky-
scanning radiometers to measure aerosol optical properties [55]. In a manner similar
to the EPA AQS sites, we selected six AERONET sites within the simulation domain
for model evaluation, including CalTech (Pasadena), California; Santa Monica, California;
Kelowna, British Columbia; White Sands, New Mexico; Hermosillo, Mexico; and
Neon-Civalla, Colorado.

The simulated surface BC and OC concentrations were compared to the interagency
monitoring of protected visual environments (IMPROVE) network. The IMPROVE network
primarily measures the BC and OC at national parks and national monuments [56], and
samplers collect 24 h samples every 3 days [57]. We selected six IMPROVE network
sites for model evaluation, including Phoenix, Arizona; Fresno, California; Puget Sound,
Washington; Lava Beds, California; Great Basin, Nevada; and San Rafael, California. The
selection of the AERONET and IMPROVE sites provided the required spatial distancing to
check the model’s performance in different regions.

2.3.3. Satellite Observations

Apart from ground-based observations, we also included satellite products for further
evaluation because of their broad spatial coverage.

For precipitation, we used daily observations of total precipitation from the tropical
rainfall monitoring mission (TRMM) [58]. The validity of the TRMM products has been
extensively examined in North America with relatively reliable results [59]. Note that
WRF-CAM5 saves precipitation output in a cumulative manner (i.e., in the total amount for
a month). We calculated the precipitation from both the TRMM products and simulation
output as hourly values (i.e., millimeters per hour) for direct comparison.

For AOD over the northeastern Pacific Ocean, we use synergized optical depth of
aerosols (SODA) [60–62] retrievals. SODA AOD is a product derived from cloud–aerosol
lidar and infrared pathfinder satellite observations (CALIPSO) surface return that has
been proven to show excellent agreement with other airborne and satellite datasets [60,62].
SODA AOD does not depend on an a priori aerosol classification scheme, unlike the
standard CALIPSO product; therefore, the retrievals are unaffected by biases attributed to
layer under-detection and aerosol type misclassification. Because SODA is derived from
CALIPSO-attenuated backscatter, the SODA spatial resolution is identical to CALIPSO
(333 m). CALIPSO has a relatively narrow cross-track beam width (~70 m at the Earth’s
surface) [63] because the beam is fixed at a near-nadir viewing direction [64] and, therefore,
the retrievals cover a fraction of a WRF-CAM5 grid cell. Here, we sampled the WRF-CAM5
model grid cells closest to the CALIPSO center line for each observational time-step and
took the average on a daily basis.

For CO evaluation, we used measurements of pollution in the troposphere (MO-
PITT) [65] for surface CO mixing ratios. MOPITT adopts correlation spectroscopy to
derive the column-integrated CO levels. The derivation of surface CO mixing ratios is
implemented by Worden et al. [66].

2.3.4. MAGIC Ship Campaign

In June 2013, a C-9 class ship, serving as part of the marine atmospheric radiation
measurement (ARM) global energy and water cycle experiment (GEWEX)–cloud system
study (GCSS)–Pacific cross-section intercomparison investigation of clouds (MAGIC) [27]
missions traveled round-trip between Los Angeles, California, and Honolulu, Hawaii. This
MAGIC field campaign [27,67] provides valuable in situ data for the model evaluations
over the ocean.

The focus of MAGIC is on marine clouds with measurements such as temperature,
winds, carbon monoxide, AOD, and cloud condensation nuclei. There are no other detailed
aerosol chemical measurements. In June 2013, a campaign vessel made a round-trip voyage
between Los Angeles, California, and Honolulu, Hawaii (Figure 1a). In this study, we
used the surface temperature and AOD from the MAGIC campaign [27] to evaluate our



Atmosphere 2023, 14, 1122 8 of 30

simulations over the northeastern Pacific. The temperature data from the MAGIC campaign
were collected every minute, while the AOD data were collected intermittently. To match
the simulation, the surface temperature data were averaged to an hourly resolution, and
the AOD data were averaged to a daily resolution.

3. Model Improvements and Code Modification

We modified two major WRF-CAM5 modules, MAM3 and CBMZ, to mitigate two
specific deficiencies: missing biomass burning emission processes in both MAM3 and
CBMZ, and missing VOC-to-SOC conversion mechanisms. To illustrate these modifications,
we performed six sets of simulations, four of which documented progressive improvements,
one of which employed increased emissions, and the last of which was a benchmark run
with the more sophisticated MOZART-MOSAIC chemistry suite. All simulations used the
same chemical and meteorological initial and boundary conditions described in Section 2.2.
Specifically, these simulations are summarized in Table 3 as follows:

(a) The baseline run with the original WRF-CAM5 coupled with CBMZ-MAM3 (baseline)
in the NCAR-released WRF-Chem model. This is a similar setup as developed by
Ma et al. [24].

(b) A run including the capability of incorporating biomass burning aerosol emissions in
MAM3 (AddingBBaerosol), such as BC and OC.

(c) A run including configuration (b), as well as the capability of incorporating biomass
burning emissions of gaseous species in CBMZ (AddingBBgas), such as CO
and VOCs.

(d) A run including configuration (c), as well as the conversion mechanism from VOCs
to SOC through an intermediate product SOCG (SOC gas; see Section 3.2 for details)
(AddingSOC);

(e) A run including configuration (d) and increasing both anthropogenic and biomass
burning emissions by three times the inventory levels (TriplingEmission);

(f) A benchmark run with the MOZART-MOSAIC chemistry suite (MOZART-MOSAIC),
which is similar to the setup of Wu et al., (2019) [7].

Table 3. Names and descriptions of each simulation case. Note that each of these configurations is an
additional change based on the configuration in Table 1, except for configuration (f).

Configuration Short Name Description

a Baseline Baseline configuration (Ma et al., 2014 [24])

b AddingBBaerosol Aerosols from biomass burning emissions added
to MAM3

c AddingBBgas Gases from biomass burning emissions added
to CBMZ

d AddingSOC VOC-to-SOC conversions added

e TriplingEmission 3× anthropogenic and biomass burning
emissions

f MOZART-MOSAIC The MOZART-MOSAIC run (Wu et al., 2019 [7])

3.1. Accounting for Biomass Burning Emissions in CBMZ-MAM3

Adding the capability of incorporating biomass burning emissions into the CBMZ-
MAM3 chemistry suite involves supplying the emitted species to these two modules
separately. The first step is to add emitted aerosol-phase species to the MAM3 module.
We added three major aerosols emitted by burning biomass—BC, primary OC (POC), and
sulfate—to the MAM3 read-in module. By default, MAM3 partitions the aerosols into three
modes: Aitken, accumulation, and coarse. In this modification, we added all species to the
accumulation mode, where most of the biomass burning aerosol masses reside.

Next, we added gas-phase chemical species emitted by burning biomass to the CBMZ
module. The following primarily emitted gas species were added: SO2, NO2, NO, NH3,
CO, CH3COCHO, CH3OH, C2H5OH, and C5H6O2. Among the species listed, SO2 has
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an oxidation mechanism to produce aerosol-phase products (e.g., sulfate); however, NOx
species (NO and NO2) did not lead to nitrate production because MAM3, by default, does
not integrate a nitrate chemistry mechanism [22].

3.2. Enabling VOC-to-SOC Conversion

Apart from neglecting the biomass burning emissions, another major issue with the
current CBMZ-MAM3 module in WRF-CAM5 is the lack of accounting for SOCs (called
SOAs in Liu et al. [22]; we use carbons instead of aerosols in the definition here and,
therefore, refer to them as SOCs).

A more applicable approach is to group the VOCs either by molecule or structure [68],
or by volatility [69,70]. However, both approaches can still be computationally demanding,
depending on the number of groups simulated by the model and the complexity of the
SOC-related chemistry the model needs. MAM3 adopts a simplified, less costly approach
because it was built to provide a “minimal representation” of aerosol particles in global
climate models.

MAM3 treats the formation of SOCs in a yield-based bulk mechanism from a prede-
fined intermediate variable called SOCG (called SOAG in Liu et al. [22]; similar to SOC,
we use carbons instead of aerosols in the definition here). SOCG is emitted as a single
lumped semi-volatile organic carbon gas species and the SOCG emissions are calculated
from primary VOCs (alkanes, toluene, isoprene, etc.) based on the fixed mass yields [22],
as described in Equation (1):

SOCG = ∑n
i=1CVOCi ∗ yieldi, (1)

where CVOCi represents the concentration of individual VOC species (in parts per billion,
ppb) that contributes to the total SOCG, and yieldi represents the corresponding empirically
determined yield factors. The typical range for the yield factors is 5–25% [22].

Here, we follow Liu et al. [22]: a total of six groups of VOC species are added to
calculate the intermediate variable (SOCG) as an input to the MAM3 aerosol module.
These added VOC species are big alkanes, big alkenes, isoprene, toluene, monoterpenes,
and hydroxyacetone (also known as acetol). Among these six groups of species, the first
five were defined by Liu et al. [22], while the last species (hydroxyacetone) was added
to this study. Adding hydroxyacetone can improve the simulation results because it is
the dominant species among all emitted VOCs in the FINN inventory. The contributions
of hydroxyacetone toward SOC formation have been documented in several previous
studies [71,72].

The yield factor of each species was assumed to be 15%, except for isoprene and
monoterpenes, which were assumed to be 4% [73] and 25% [74], respectively. In the CAM-
MAM3 implementation, SOCG is treated as an active tracer, once emitted, the aerosol
module MAM3 then calculates condensation/evaporation of the SOCG to/from the aerosol
modes, based on the thermodynamic equilibrium between the gas and aerosol phases.
Liu et al. [22] showed that SOCG is predominantly removed by conversion to SOC. To
reduce model complexity, we did not address the removal of SOCG.

Note that the yield factors for the big alkanes and alkenes we adopted are higher than
the values (5%) used in Liu et al. [22] and lead to better model performance (see Section 4).
The empirical basis for using a simple treatment for SOC formation is to assume that the
mass yield from the precursor (VOCs) to SOC is at a fixed level. MAM3 further simplifies
such a process by lumping all VOCs into one intermediate species called SOCG. Similar
methods have been adopted by other chemistry–climate models (e.g., GEOS-Chem and
CAM-Chem) [41,75,76], while more sophisticated approaches for representing SOA are
also adopted in others [77,78].

3.3. Modifications to Enhance Emissions

We also conducted a sensitivity test for emission enhancements after we completed
the two major modifications above. To increase the aerosol emissions, we applied a scaling
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factor of 3 to both the anthropogenic and biomass burning emissions in the MAM3 module
by multiplying them by the incorporated emission fluxes from the inventories. Then, the
updated emissions were passed to any subsequent modules.

Previous studies have suggested that both anthropogenic and biomass burning emis-
sions are underestimated in the current inventories over the US. For anthropogenic emis-
sions, Russo et al. [79] have found that the NEI underestimates the emissions from natural
gas facilities, and [80] noticed that the NEI underestimates VOCs, a key component of SOA
modifications performed in this study, from industrial sources. For biomass burning, we
used FINN as the inventory, which relies on MODIS to detect fires. Thus, FINN is known to
suffer from underestimation due to the following factors [44,81]: (a) MODIS cannot detect
small and/or smoldering fires, and (b) MODIS cannot detect a fire region if it is covered
by clouds.

We acknowledge that increasing the emissions by a factor of 3 is empirical, which
is based on our preliminary tests to best match the domain-averaged AOD observations.
However, it is needed sometimes in modeling studies (including WRF-Chem) to address
the uncertainties in the emission inventories in order to resolve the discrepancies from the
real-world observations [82–84].

3.4. Modifications to Other Related Modules

In addition to the two chemistry modules described above, we also modified other
accompanying modules that use their output for further processing. Three additional
modules serve these purposes (Figure 2): the chemistry-driver, emissions-driver, and
plume rise modules. For the chemistry-driver and emissions-driver modules, the required
modifications are to add newly incorporated variables from the biomass burning emissions,
pass these variables to the two gas-phase chemistry and aerosol modules, and define and
compute a new species variable for SOCG.
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For the plume rise module [85], additional adjustments are necessary. The first step
is to redistribute surface emissions into a number of vertical levels simulated by the
model. In this case, FINN assumes that biomass burning emissions all originate from
the surface, and the level is therefore set to 1. Then, we pass each emitted species to the
vertical redistribution section where the plume rise module extracts the read-in emissions,
distributes them vertically, and assigns injection heights for each species sourced from
FINN. In the WRF-CAM5 used here (and the common plume rise module in the default
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WRF-Chem as well), the injection height is assigned by multiplying the original surface
emissions by a weighting factor at each model level calculated online by the plume rise
module. A vertical redistribution computed in this manner is considered near-real-time
(occurring simultaneously with emission) [17]. Note that original WRF-Chem uses the
Freitas et al. [85] plume rise scheme by including the sub-grid scale plume rise of vegetation
fires in low-resolution atmospheric transport models. For detailed calculations of plume
rise, please refer to Section 2 of Freitas et al. [85].

In addition to the module modifications described above, all the newly added species
must be defined in the WRF-CAM5 registry file. We coupled the CBMZ-MAM3 module to
WRF-CAM5 using the second-generation regional acid deposition model (RADM2) [86],
and the emissions read-in option was defined as option 9 in WRF-CAM5. However, the
current version of WRF-CAM5 (3.9.1.1) does not list exhaustive VOC species in the registry;
thus, changing the chemistry modules alone without editing the registry would result
in a significant underestimation of the total SOC because the model ignores the major
VOC species we added. Therefore, we must add all the currently missing VOC species to
the chemistry registry and align the species names in the model to be consistent with the
emissions inventory. By doing so, we allow the MAM3 chemistry module to recognize the
added VOC species and process them.

4. Results

In this section, we provide a comprehensive evaluation of the model performance
based on the setup in Section 2 and improvements made in Section 3.

4.1. Meteorological Evaluation

First, we validated the simulated meteorology. Figure 1 shows the spatial distribution
of the monthly surface temperature and precipitation from WRF-CAM5 in June 2013.
Compared to the MERRA-2 and TRMM observations, the simulations nudged by the
6-hourly NCEP-FNL meteorology are consistent with the observations, with mean biases
of 0.26 K and 0.01 mm/h. Please note that the color bars are in log scale and the difference
within the same color code may not be negligible. Using log-scale color bars enables us to
demonstrate that the simulated results and TRMM products are of a similar spatial pattern,
in particular, for the regions where the precipitation rate is low. For the surface temperature,
the WRF-CAM5 simulation successfully identifies the hot regions inland (near Arizona
and Baja California). For precipitation, TRMM identifies the central Pacific and eastern
tropical Pacific as regions with strong precipitation; both are captured by the WRF-CAM5
model. For inland areas, the simulation agrees with the TRMM data, which indicated that
Colorado and New Mexico experienced more precipitation.

For the surface temperatures, we also evaluated the simulations against observations
from six cities with consistently high temperatures (Figure 3). The simulated results have
less than 2 K biases for all sites except Salt Lake City, Utah, and Denver, Colorado. For Salt
Lake City and Denver, the simulated results have cold biases of less than 4 ◦C. Note that
the cold biases in Denver and Salt Lake City are considered to be related to the topography.
Because the simulation grid spacing is 36 km, it includes part of the surrounding areas for
both cities; however, both Denver and Salt Lake City are surrounded by mountains and,
therefore, grid boxes containing these cities have higher model elevation values than the
real-world observational sites do. Therefore, a lower simulated temperature is expected.
Nonetheless, for the period simulated, all days were within the range of anticipated
uncertainties. Furthermore, we also evaluated the simulated temperature against the
MAGIC campaign (Figure 4a); the simulated results are highly consistent with the ship
observations. For each observational time-step (1 h), our simulated surface temperature is
within 1 K of the ship observations.
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Figure 3. Temperatures over six cities (a) Irvine, CA (b) San Diego, CA (c) Salt Lake City, UT
(d) Denver, CO (e) Seattle, WA and (f) Phoenix, AZ. Observations from the EPA AQS are shown in
green, and the TriplingEmission simulated values are in red. Error bars are 1 standard deviation of
the day-to-day variability for the entire month.

Here we select the centerline of the CALIPSO-SODA retrieval that is the closest to
the WRF-CAM5 simulation grid for each observational time-step and take the average on
the daily basis. We have collected the CALIPSO-SODA AODs at finer spatial scales to the
WRF grid. Since there is one daily satellite overpass, at 1:30 pm local time, the day-to-day
variability in the model and observations is indicated by the error bars shown in Figure 4c.
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Figure 4. (a) Surface temperature evaluation against the MAGIC campaign; (b) AOD comparison
against MAGIC shipborne observations; and (c) CALIPSO retrievals based on SODA algorithm. Error
bars are 1 standard deviation of the day-to-day variability for the entire month except for shipborne
observations in (b) which come from the instrument uncertainty.

4.2. Evaluation and Progressive Improvement of the Chemical Output Due to Model Enhancements

In this section, we validate the chemical species and demonstrate the step-by-step
model improvements made.

4.2.1. Improvements to the AOD

We first evaluated the simulated AOD at 550 nm against both the reanalysis prod-
ucts and station observations (Figures 5 and 6). Generally, the point-based observations
at individual stations have higher simulated AOD levels than their reanalysis product
counterparts do. The AOD improvements after adding the biomass burning emissions of
aerosols (AddingBBaerosol) were small (from 0.04 to 0.05) in the United States, and they
cannot capture the hotspots seen in the MERRA-2 products on the monthly mean basis. The
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largest improvements in the model AOD are seen in parts of Mexico. After enabling the
VOC-to-SOC conversions (AddingSOC), the spatial pattern in the United States becomes
more consistent with that of MERRA-2; however, the magnitude is still much smaller (by
a factor of ~2–3). Therefore, we further compared the MERRA-2 products with a tripled
emission run (TriplingEmission) and found a much smaller model bias—about 0.05—under
this configuration for the regions in both the United States and Mexico. Almost all the
hotspots shown in MERRA-2 are captured by the model simulation of monthly AOD; how-
ever, the magnitudes at different hotspots are still underestimated by the model compared
to MERRA-2. For example, MERRA-2 has an AOD hotspot in southwest New Mexico,
which is not evident in the model simulations. Nonetheless, we did observe a progressive
improvement in the model performance after the step-by-step enhancements described in
Section 3.
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Figure 5. AOD at 550 nm from (a) baseline run, (b) AddingBBaerosol run, (c) AddingSOC run,
(d) TriplingEmission run, (e) MOZART-MOSAIC simulation, and (f) MERRA-2 products. Please note
that (a,b) are not identical but have small differences.
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Figure 6. AOD values at 550 nm for six stations (as described in the panel titles, locations shown
in Figure 5a). Green lines correspond to ground-based observations from AERONET stations; blue
lines are the baseline simulation; black lines are the AddingBBaerosol run; magenta lines are the
AddingSOC run, and red lines are the TriplingEmission run. Vertical bars are 1 standard deviation in
the daily averaged value for each model run.

We also evaluated the AOD against the AERONET observations on a daily basis
(Figure 6). Overall, the AERONET observations have higher AOD values than the TriplingE-
mission run (which has the highest simulated AOD) except for occasional dips in the
observed AOD at each station (e.g., 11 June at the CalTech station). Despite the underes-
timation of daily variability in AOD, we can clearly identify gradual improvement after
each implementation as the mean biases continue to decrease. For the TriplingEmission
run, five out of the six stations see the minimal RMSE among all runs. Only one station
(ORS_Hermosille) sees that TriplingEmission has the second-best performance, and this
is only 0.001 worse than the AddingSOA run. The reduced biases are consistent with the
evaluation results when compared with the MERRA-2 products (Figure 5). Among all the
stations, the White Sands station, which is close to a biomass burning emissions source
(Figure 5a), has the most visible improvements and best performance. The hotspots in
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Colorado, New Mexico, and Mexico were not visible in previous runs (e.g., baseline and
AddingBBaerosol), but spatially consistent patterns start to appear in the AddingSOA run,
and the difference is further reduced in the TriplingEmission run. The TriplingEmission
simulation (red line) at this station aligns with the observations (green line) very well
for most days in June, except for the last few days. The simulated daily AOD levels are
generally lower than those in the observations; however, the simulations perform well
for certain stations (e.g., Santa Monica and Kelowna) and have large biases in others (e.g.,
CalTech and Hermosillo). These might be influenced more by urban sources, which are
difficult to capture at the 36 km grid spacing. Thus, we conclude that the step-by-step
implementation reduces the model mean biases and improves the AOD simulations.

The performance of the simulated AOD over the ocean is relatively worse than that
over land compared with the observations. In Figure 4b,c, we compared the TriplingE-
mission AOD with both the MAGIC campaign and CALIPSO daily retrievals over the
eastern Pacific. For the MAGIC campaign, the simulated AOD was mostly low, with a
bias between −0.21 and 0.01, and 86% of the total observed days were within the range
of uncertainty. When compared to the CALIPSO-SODA retrieval, our simulated results
show better agreement, with biases ranging from 0.01 to 0.06. For most of the simulation
period, the results are within the uncertainty range of 7 days. The largely consistent results
between simulations and benchmarks indicate that the improved WRF-CAM5 is capable
of producing more realistic results over both the ocean and land than the default model.
Please note that the increases for the off-coast AOD (Figure 5) are not attributed to biomass
burning but to anthropogenic emissions in California.

Note that the long-range aerosol transport from Asia was not well captured in the
WRF-CAM5 simulations (Figure 5) because a limited number of aerosol species is simulated
in such a scheme. For example, the nitrate transport from Asia is completely ignored. In
contrast, the MOZART-MOSAIC simulation has more detailed configurations of aerosols
and is therefore capable of capturing this feature (also shown in the MERRA-2 products).

4.2.2. Improvements in Primary Species of BC and CO

In addition to the AOD, we also evaluated the surface mass concentrations of individ-
ual species. Figure 7 shows the surface BC concentrations from each model modification
compared with the data from MERRA-2. For BC, the baseline simulation completely missed
the hotspots shown in MERRA-2, with only slight plume footprints found near the Los
Angeles metropolitan area. After enabling the biomass burning emissions of aerosols
(AddingBBaerosol), the spatial distribution of BC shows patterns that are more consistent
with the MERRA-2 observations. Performance was further improved in the TriplingEmis-
sion run. Under this configuration, the simulated BC is comparable to the MERRA-2 results,
with only some overestimation of the BC concentrations in Mexico. These sensitivity studies
indicate that biomass burning emissions of BC from FINN may be underestimated in the
western United States and Mexico.

Figure 8 shows the station-by-station comparison between the simulated and observed
surface BC concentrations at six IMPROVE sites (location shown in Figure 7a). Generally,
the observed BC is higher than the simulated values, especially for the baseline simulation;
keep in mind that the IMPROVE network reports data on a 3-day basis (see Section 2).
Further chemistry and emissions enhancements help mitigate the bias in the simulated
results. Most of the observed daily BC values are within the day-to-day variability in the
simulations, indicating that our simulation performs reasonably well over most sites. Puget
Sound, Washington, is the only site where the simulations failed to capture the observa-
tions entirely. The large 3-day variability in the observational data exceeds the range of
model uncertainty, yet the improved emissions-enhanced (AddingSOC/TriplingEmission)
simulations yield results closer to the observed values.
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For the primarily emitted chemicals, we also supplied emissions of gas-phase species.
This improvement is shown in Figure 9 using CO as an example. In Figure 9b, CO emitted by
biomass burning emerges from New Mexico and the southwestern part of Colorado. These
hotspots of high CO mixing ratios coincide with the hotspots of high BC concentrations
shown in Figure 7, indicating that biomass burning dominates the contributions over
these regions. After adding the biomass burning emissions of gas species, the spatial
pattern of the CO mixing ratios becomes similar to that of the MERRA-2 products shown
in Figure 9c and MOPITT in Figure 9d. The MOPITT is largely similar to the MERRA-2
products, and, therefore, we believe that MERRA-2 should be considered trustworthy when
capturing large-scale patterns. However, the model still underestimates the MERRA-2
values. For surface observations of CO, we compared the daily mixing ratios to the
observations (Figure 10) at the same sites that are used for the temperature evaluation
(shown in Figure 3).

For Irvine, California, and Seattle, Washington, the simulated CO mixing ratios match
the observations very well (mean biases < 0.05 ppm). The results are less accurate in Salt
Lake City, Utah, and Phoenix, Arizona. The simulated levels suffer from low biases of
0.1 to 0.2 ppm in these two cities; however, the daily results in both cities see improvements
that are closer to the daily observations after the implementation of AddingBBgas. Over
San Diego, California, and Denver, Colorado, the simulated results were rather poor. The
low biases are generally between 0.2 and 0.3 ppm. As for the surface temperature, the low
biases for Denver and Salt Lake City are considered to be topography-induced. Because
both cities are surrounded by nearby mountainous areas, the CO levels tend to be diluted
due to the mixing of urban emissions with cleaner mountainous air. Thus, when conducting
spatial averaging, these regions will suffer from low biases.
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baseline simulation; black lines are the AddingBBaerosol run, and red lines are the TriplingEmission
run. Red error bars represent 1 standard deviation of the day-to-day variability for the entire month
for the TriplingEmission run.
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Figure 10. CO mixing ratios for six cities (a) Irvine, CA (b) San Diego, CA (c) Salt Lake City, UT
(d) Denver, CO (e) Seattle, WA and (f) Phoenix, AZ. Green lines are the observations from the EPA air
data, blue lines are the baseline simulation, and red lines are the AddingBBgas simulation. Error bars
are 1 standard deviation of the day-to-day variability for the entire month.

4.2.3. Improvements of OC (POC and SOC)

Similar to BC, the simulated OC concentrations and spatial distributions underwent
step-by-step improvements due to the modifications mentioned above. Furthermore, OC
consists of both primary and secondary sources, so we added one more case of VOC-to-
SOC conversion (AddingSOC) when comparing the OC against observations or reanalysis
products; Figure 11 shows this improvement spatially (in log scale). Like that of BC,
the OC spatial pattern is significantly affected by the biomass burning locations. After
AddingBBaerosol, regions close to areas of strong biomass burning emissions become
spatially more consistent with the data from the MERRA-2 products. Although we see
some improvements after adding the primary OC, the discrepancy between the simulation
(Figure 11b) and reanalysis (Figure 11e) remains large. Such differences are significantly
reduced by implementing the VOC-to-SOC conversions (Figure 11c). In the cases with
TriplingEmission initiated, the simulated total OC is estimated to be 0.68 µg/m3 (22%)
larger than that of the MERRA-2 products for the United States on average.

When comparing the simulated OC to observations from the IMPROVE stations, the
modified model versions have much better performance than the baseline run (Figure 12),
with a reduced root-mean-square error (RMSE) of 2.43 µg/m3. For most stations, the
observed OC is close to the output from the AddingSOC and TriplingEmission runs. Two
stations (Lava Beds, California, and Great Basin, Nevada) have even higher observed OC
values, albeit only slightly higher than that of the TriplingEmission run. On most days, the
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observations fall within the range of the simulation results, indicating that the enhanced
model implementation successfully captures the overall OC concentration levels.
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Figure 12. OC surface concentrations for six stations. Green lines are the observations from the
IMPROVE stations; blue lines are the baseline run; black lines are the AddingBBaerosol run; ma-
genta lines are the AddingSOC run, and red lines are the TriplingEmission run. Red error bars are
1 standard deviation of the day-to-day variability for the entire month for the TriplingEmission run.
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4.3. Comparison with MOZART-MOSAIC

One question we aim to answer here is how the CBMZ-MAM3 simulation performs
compared to the more comprehensive MOZART-MOSAIC configuration. Note that the
CBMZ-MAM3 chemistry suite demands 2.5-times fewer computational core hours com-
pared to the MOZART-MOSAIC simulations. Thus, we also evaluated the BC, OC, and
AOD results for the MOZART-MOSAIC simulation (Figure 13); to maintain consistency,
we did not adjust the emissions levels in either the CBMZ-MAM3 or the MOZART-
MOSAIC runs.

For the AOD (first row of Figure 13), the two suites have comparable performance
in terms of absolute magnitude, but we can still identify better spatial agreement for the
CBMZ-MAM3 scheme compared to the MOZART-MOSAIC scheme. For BC (second row
of Figure 12), MOZART-MOSAIC yields concentration levels comparable to those of the
CBMZ-MAM3 simulations. For OC (third row of Figure 12), MOZART-MOSAIC has
much lower values than the CBMZ-MAM3 results. When using the MERRA-2 products as
the benchmark (Figures 11 and 13), the improved CBMZ-MAM3 produced better results
despite being a less sophisticated chemistry scheme.

The major difference in OC between the two sites comes from the SOC treatment.
Figure 13 (bottom two rows) compares both the primary and secondary OC between
MOZART-MOSAIC and CBMZ-MAM3. For the primary OC, two chemistry suites show
comparable results in terms of both the spatial pattern and magnitude; however, only the
improved CBMZ-MAM3 simulation is capable of identifying SOC concentration hotspots,
while MOZART-MOSAIC fails to do so. One plausible explanation for this is that the
added VOC species in MAM3 include hydroxyacetone, which dominates the VOC-to-SOC
conversion, while the current MOZART-MOSAIC configuration does not incorporate this
species and its conversion to SOAs.

Despite the dominating role the chemistry suite may play, the simulated differences
between WRF-CAM5 with CBMZ-MAM3 chemistry and WRF-Chem with MOZART-
MOSAIC chemistry should not be attributed to chemistry suite selection only. This is
because the different microphysics and other physical schemes in these two sets of simula-
tions can also lead to the different diffusion and transport of chemical species. However,
the main goal of comparing with the MOZART-MOSAIC simulation is to demonstrate a
similar performance between these two model setups despite a much higher computational
efficiency using WRF-CAM5 (our model here).

In addition to observations and reanalysis products, our results are further compared
to other simulations, Jaffe et al. [87] and Spracklen et al. [88], for similarity. For example, our
simulated CO mixing ratio for AddingBBgas in the northwestern US (Figures 9 and 10) aligns
with the results of Jaffe et al. [87], who used the Naval Research Laboratory aerosol analysis
and prediction system. Furthermore, our TriplingEmission results are largely consistent with
Jaffe et al. [87]. Additionally, the organic carbon (OC) values in Spracklen et al. [88]. agree
with our findings in Figure 11, demonstrating similar orders of magnitude. These results were
obtained using GEOS-Chem global 3-D CTM simulations. Therefore, we conclude that the
overall geospatial patterns are largely consistent.

4.4. Off-Coast Aerosols

Finally, we demonstrate a potential application of this improved model by showing
off-coast aerosol simulations near California. Here, we break the off-coast areas into three
boxes representing north, central, and south boxes (Figure 14) with their vertical profiles
and time series depicted.
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Figure 13. Comparison of simulations from two chemistry schemes. (a,c,e,g,i) The left column is
the CBMZ-MAM run of AddingSOC (not TriplingEmission) and (b,d,f,h,j) the right column is the
MOZART-MOSAIC run. The first row (a,b) is AOD at 550 nm; the second row (c,d) is BC; the third
row (e,f) is OC (in log scale); the fourth row (g,h) is the primary OC; and the fifth row (i,j) is SOC (in
log scale).
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Figure 14. Averaged west coast boxed area vertical cross-sections for (a) total aerosol concentration
(b) OC, and (c) sulfates. The three boxes in each figure indicate the selected north, central, and south
boxes. (d), (e), and (f) are concentration time series for (a–c), respectively.

Figure 14a shows the total aerosol concentration in the region, with the central box
showing a dominant level followed by the south box. The north box, on the contrary,
has much lower aerosol concentrations compared to both the central and south boxes. In
Figure 14b,c, we present the accompanied OC and sulfates concentrations, and the rationale
behind showing these two species is shown in Figure 15, as OC and sulfates are the two
dominant species in this region.
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Figure 15. Aerosol distributions for south, central, and north Boxes.

OC has very similar vertical distributions and time series compared to the total aerosol
concentrations (Figure 14), which is expected as OC dominates the aerosol composition
in both the south and central Box (Figure 15). For SO4 levels, all three boxes share similar
total concentrations.

When evaluating the time series of aerosols, the temporal pattern of total aerosol is
largely similar to the OC’s pattern, with two episodic events taking place between July
and September. In contrast, the SO4 peaks in the early periods of this simulation (from
June to August) and drops significantly afterward. In addition, the time series of SO4 has
very similar spatial patterns across all three boxes while the OC exhibits biased temporal
patterns (heavily dominated by the central and north Boxes) for its time series. Such a
discrepancy indicates that these aerosols could be transported from different episodic
events with different origins.
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5. Conclusions

WRF-CAM5 is widely used in many atmospheric chemistry applications such as air
quality, chemistry, and climate interactions [26]. In this study, we enhanced the chemistry
suite in WRF-CAM5 for simulations of biomass burning trace gases and secondary aerosol
formation by modifying both the CBMZ and MAM3 modules and any accompanying
modules or registries (i.e., the plume rise, emissions-driver, and chemistry-driver mod-
ules). In total, we performed four progressive modifications to understand the relative
importance of these processes: (1) adding the model capability to incorporate the biomass
burning emitted aerosols in MAM (AddingBBaerosol); (2) adding the model capability to
incorporate the biomass burning emitted gases in CBMZ (AddingBBgas); (3) implementing
VOC-to-SOC conversions (AddingSOC); and (4) increasing the anthropogenic and biomass
burning emissions over the western US by a factor of three (TriplingEmission).

The simulated results demonstrate step-by-step improvements after introducing each
modification. In general, when compared to observations, the model performance follows
the order of TriplingEmission > AddingSOC > AddingBBaerosol > baseline. These im-
provements lead to not only more spatial consistency but also better agreement with the
observations. Both simulated aerosol concentrations and gas-phase species and AOD at
550 nm showed significant improvements after the model modifications.

Species-wise, both BC and OC have improved accuracies with an RMSE reduction
of 0.5 µg/m3 (31% less) for BC and 2.4 µg/m3 (58% less) for OC. We also identified
considerable improvements for OC after introducing the secondary VOC-to-SOC processes
and emissions enhancements. This study suggests that the low bias of the current version
(baseline) comes from both model deficiencies (no biomass burning emissions and VOC-to-
SOC conversions) and underestimated biomass burning emissions.

Furthermore, we also compared our results with a more comprehensive MOZART-
MOSAIC setup. For directly emitted species (e.g., BC), both models yield comparable
results. For species involving secondary processes (e.g., OC), CBMZ-MAM3 agrees better
with the MERRA-2 reanalysis data. It is noteworthy that the MOZART-MOSAIC chem-
istry suite is generally considered to be more sophisticated and requires 2.5 times more
computational core hours.

Our results suggest that the improved WRF-CAM5–CBMZ-MAM3 can produce rea-
sonable simulations of biomass burning aerosols over the western US and eastern North
Pacific while maintaining a low computational cost. This modeling capability with both
accuracy and computational efficiency could be used for studying the long-term trends
(e.g., in the last 30 years) of biomass burning aerosols and trace gases resulting from the
increased wildfires over the western US [89], and their influences on the regional climate
at a higher resolution than global climate models. However, we found that there is a
substantial underestimation in both biomass burning and anthropogenic emissions over
this region, consistent with previous studies. An increase in the emissions by a factor of
three is needed in the present study to match the regional AOD observations from either
ground-based or satellite remote sensing independent of the selected chemistry-aerosol
scheme (i.e., CBMZ-MAM3 vs. MOZART-MOSAIC).

Further investigations of the biomass burning emissions and related processes in this
region, e.g., emissions from small or smoldering fires and injection height of moderate and
large fires, may help resolve the model’s low bias. In addition to the emissions, enhanced
aerosol wet removal resulting from the increase in model horizontal resolution [90] might
also contribute to the underestimated AOD, and re-tuning the aerosol wet removal effi-
ciency might be needed when the model resolution is refined, e.g., from the global CAM5
model to the WRF-CAM5.

Lastly, one may challenge the notion that the exponential growth in computational
power could render efficient chemistry representation in regional models unnecessary.
However, we believe that there will always be a desire for simulations with higher spatial
and temporal resolution, as well as longer periods. Furthermore, high-performance com-
puting is not a luxury accessible to everyone who seeks it. Therefore, we aim to empower
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those who wish to conduct climate–chemistry studies by providing them with the best
accessible tools. Future studies may consider implementing and quantifying the upgraded
CBMZ-MAM3 chemistry suites for other regional aerosol and climate simulations and/or
for different time periods (seasons). Furthermore, this paper illustrated how to add biomass
burning into WRF-CAM5 models and supplied a pathway for VOC-to-SOC conversion.
Future model developers are encouraged to further validate their results before publishing
the products.
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