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A B S T R A C T   

Heatwaves and urban heat islands disproportionately affect residents of urban areas. Past studies 
on the heat vulnerability indexes (HVI) to evaluate the heat-related risk have two major limita
tions: the inability to capture street-level human heat stress and reliance on single meteorological 
proxies to measure heat exposure. To address these gaps, this study examines the impact of street- 
level outdoor thermal comfort (OTC) on heat vulnerability in the city of Houston, Texas. OTC 
refers to an individual’s thermal perception of their surroundings. The study estimates the im
pacts of HVI scores and energy budget (EB) values of OTC on heat-related disease while inves
tigating their spatial distributions and clusters. The results show that the explanatory power of the 
suggested models on the number of emergency department (ED) visits improved when the street- 
level OTC had higher HVI scores and more comfortable conditions. A positive bivariate rela
tionship was found between the HVI scores and EB values, showing the highest explanatory 
power (adj-r2) of around 36%. Chronic disease and heat exposure significantly affected the HVI, 
whereas tree and sky view factors were crucial determinants of the EB values. These findings 
provide a new approach to heat vulnerability evaluation at the human scale to effectively address 
heat-related risk.   

1. Introduction 

Heatwaves and urban heat islands (UHI) disproportionally affect residents of urban areas. The rising temperature is directly related 
to recent increases in heat-related mortality and morbidity (Niu et al., 2021). Heat-related illnesses are often concentrated in specific 
segments of the population, such as those comprising low-income, uneducated, elderly, and unhealthy individuals (Uejio et al., 2011; 
Ellena et al., 2019, 2020). According to the population vulnerability framework (Barros et al., 2014; Brooks, 2003; Crimmins et al., 
2016), Heat Vulnerability are often conceptualized as consisting of three components: exposure, sensitivity, and adaptability. To 
examine the uneven distribution of heat-related risks and identify vulnerable populations, numerous attempts have been made to 
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produce validated heat vulnerability indexes (HVIs) (Niu et al., 2021; Chen et al., 2022; Karimi et al., 2018; Sun et al., 2021). These 
studies produced meaningful implications in that reporting major socio-economic and built-environment drivers of such vulnerability 
to guide policy development and resource allocation in preparation for and response to heat-related risks. 

Numerous efforts have been made to construct a heat vulnerability index to identify the heat-related public health risk. With 
growing concerns of negative impact of heat waves on health, several studies focused on investigating socio-economic population 
characteristics, heat stress exposure, and accessibility to medical resources while exploring their interaction with the environment in 
identifying heat vulnerability (Romero-Lankao et al., 2012; Ellena et al., 2020; Niu et al., 2021). The varying association between 
vulnerability index scores and heat-related disease has been thoroughly explored in multiple studies (Loughnan et al., 2014; Eisenman 
et al., 2016; Nayak et al., 2018). However, those past studies have a significant limitation in that they mostly use all-cause morbidity or 
mortality as the outcome in their index construction (Krstic et al., 2017; Conlon et al., 2020; Cheng et al., 2021). This is not suitable as a 
proxy for heat-related disease as a variety of factors may impact in addition to heat-related risks. 

Despite the importance of HVIs, two major limitations hinder index refinement and translations of the indexes into policy 
implication. Firstly, HVIs were mostly developed for the scales of aggregated areal-based units, such as census tracts (Cheng et al., 
2021). Such zonation may entail the modifiable areal unit problem (MAUP) (Openshaw, 1981) and the uncertain geographic context 
problem (UGCoP) (Kwan, 2012). In particular, as humans’ heat exposure is determined by the immediate surroundings, environmental 
and sociodemographic factors aggregated to arbitrary administrative boundaries may not capture heat-related health risks (Karanja 
and Kiage, 2021; Mushore et al., 2018). Therefore, assessment of spatially explicit heat exposure factors at the street level is needed to 
accurately capture human heat-related risks. Secondly, existing HVIs rely on single meteorological (e.g., surface temperature, air 
temperature) or environmental proxies (e.g., vegetation index, impervious surface) to measure heat exposure (Ellena et al., 2020). 
However, such a simplified method does not take into consideration the multiple energy balance fluxes that occur during human
–environment exchanges and human physiological responses to thermal stress. Due to these two limitations, HVIs often exhibit limited 
capabilities in explaining the variances in heat-related mortality or morbidity (Harlan et al., 2013; Conlon et al., 2020), which hinders 
policy formulation. 

This study aims to explore street-level outdoor thermal comfort (OTC) in order to determine the spatial distribution of heat 
vulnerability. Specifically, we investigated the impact of heat vulnerability components on the occurrence of heat-related diseases, 
while considering spatial clusters of street-level OTC hot spots. To achieve this goal, we pursued three primary objectives. First, we 
assessed the spatial distributions of Heat Vulnerability Index (HVI) scores and street-level OTC to pinpoint areas vulnerable to thermal 
stress, while identifying the major indicators of vulnerability distributions. Second, we explored the correlation between HVI scores 
and street-level OTC to determine the spatial clusters of heat vulnerability hot spots, driven by outdoor thermal conditions and physical 
features of the street environment. Lastly, we estimated the impacts of heat vulnerability and street-level OTC on heat-related diseases 
while exploring the predictive performance of suggested HVI in explaining the variation of heat-related disease. Particular attention 
was given to the changes in the effect of heat vulnerability components according to the different levels of OTC. The city of Houston 
was selected as the study region due to its high records of heat- related illnesses, sociodemographic diversity, and increasing risks of 
Urban Heat Island (UHI) effects. Our study findings offer a new approach to heat vulnerability evaluation by measuring heat exposure 
at the human scale and offer decision support with resource allocation to effectively address heat risk in the age of climate change. 

2. Literature review 

2.1. Heat vulnerability and heat-related morbidity/mortality 

With growing concerns of negative impact of heat waves on health, research has focused on human thermal regulation and its 
interaction with the environment in identifying heat vulnerability. Various definitions and operation frameworks of vulnerability have 
been proposed (Cheng et al., 2021; Niu et al., 2021). For example, some definitions focus on assessing the probability of risk exposure, 
while others emphasize the population’s health state preceding or following disasters (Karanja and Kiage, 2021; Lee, 2014). One 
widely accepted conceptualization defines heat vulnerability as the level of vulnerability to heat across geographic space, thus 
identifying the population most in need of intervention (Reid et al., 2009). In this study, we adopt the population vulnerability 
framework (Barros et al., 2014; Brooks, 2003; Crimmins et al., 2016), which posits that the situational risks (i.e., the risk that are 
context- and temporary dependent, rather than related to individual factors) are high if the exposure to heat is high, the sensitivity of 
the population/system is high, and the adaptive capacity is low (Cheng et al., 2021). 

Heat vulnerability is linked to demographic and socio-economic factors, built environment features, pre-existing health conditions, 
and air conditioning prevalence. Demographic and socio-economic status characteristics include poverty, employment, education, 
income, gender, age, and minority status (Reid et al., 2009; Johnson et al., 2012; Sharma et al., 2018). The built environment also 
affects vulnerability through urban form, greenery, and housing quality, which determine the heat exposure level of indoor and 
outdoor conditions (Uejio et al., 2011; Harlan et al., 2013; Sharma et al., 2018). Individuals with pre-existing health conditions, such as 
cardiovascular, respiratory, diabetes, kidney, and neurological conditions, are particularly vulnerable to the impacts of heat (Prudent 
et al., 2016; Sharma et al., 2018). Air conditioning can reduce heat vulnerability by providing access to cool indoor environments, 
especially for vulnerable populations. However, relying on air conditioning without considering energy efficiency or equitable access 
may contribute to increased energy consumption, environmental impacts, and disparities in heat resilience (Bradford et al., 2015; 
Sharma et al., 2018). 

Although heat vulnerability indexes are constructed to reveal public health risks, previous studies have found varying associations 
between the index scores and mortality and morbidity outcomes. For example, Kim et al. (2017) developed an HVI that explained 32% 
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of the observed heatwave-related deaths in 232 administrative counties in Korea. Loughnan et al. (2014) compared the performance of 
HVI in predicting emergency service demand across different regions and found that the index score explained between 18.6% and 
80.7% of variability in the outcome (Loughnan et al., 2014). The variations in the explanatory power of HVI across the above
mentioned and other studies alike may be explained by spatial/temporal scales, population differences, variations in indicator se
lection, index construction, and validation dataset. For example, many studies used all-cause morbidity or mortality as the outcome, 
which may be impacted by a variety of factors in addition to heat-related risks (Loughnan et al., 2014; Conlon et al., 2020; Cheng et al., 
2021). In particular, two limitations of existing HVI indexes related to scale mismatch and poor proxies of heat exposure should be 
noted. 

HVIs were mostly developed at the scales of administrative boundaries such as counties or census tracts (Romero-Lankao et al., 
2012; Ellena et al., 2020). Results from such areal-based boundaries may be subject to aggregation fallacy, where the results vary 
greatly depend on the level of aggregation. In addition, by measuring the environmental exposure at the county or tract level, it is 
assumed that such spatial context reflects the external stressors that people residing in this area experience. However, this assumption 
is subject to the uncertain geographic context problem (UGCoP), which states that the areal units deviate from the actual geographic 
context that affect people’s behaviors and health outcomes. The spatial variations of the street’s thermal conditions that people use 
most frequently for outdoor activity and movements are not captured. To address this issue, assessment of spatially explicit heat 
exposure factors at the street level is needed to accurately capture human heat-related risks. 

Another major limitation of existing HVI indexes is related to the use of environmental (e.g., vegetation index, impervious surface) 
or meteorological factors (e.g., surface temperature, air temperature) as proxies for human thermal stress (Cheng et al., 2021). The 
variables frequently adopted for measuring heat exposure are land surface temperature, air temperature, relative humidity, and wet- 
bulb globe thermometer WBGT (Cheng et al., 2021) (See Appendix Table 1 for a table of the detailed variables and example studies). 
These are quantified according to their intensity (e.g., daily maximum, minimum, and mean), duration (e.g., heat waves and tropical 
night days, defined as days with temperatures over a certain threshold), variance (e.g., temperature range), and frequency (Romero- 
Lankao et al., 2012). Although meteorological factors are considered powerful determinants of heat vulnerability (Ellena et al., 2020; 
Niu et al., 2021; Cheng et al., 2021), such a simplified method does not take into consideration the multiple energy balance fluxes 
during human–environment exchanges and human physiological responses to thermal stress. As such, the results often fail to reflect 
the actual thermal sensations people feel when they are in the environment. These two limitations often result in inaccurate and biased 
estimations of urban residents’ heat hazard exposure. Accordingly, it is increasingly required to explore the potential applicability for 
street-level human outdoor thermal comfort in the vulnerability assessment by presenting the actual thermal sensations of urban 
residents at the street scale. 

2.2. Heat exposure and outdoor thermal comfort 

Differing from heat indices that combine only weather factors (Anderson et al., 2013), human thermal indices can take into account 
the full spectrum of ambient, physiological, and physical activity conditions that affect human-environment heat transaction (de 
Freitas and Grigorieva, 2015). Heat stress modeling is critical for population health risk characterization because it strongly predicts 
heat-related mortality or morbidity. A 10% increase in Physiological Equivalent Temperature (PET) (Höppe, 1999) or Universal 
Thermal Climate Index (UTCI) (Bröde et al., 2012) is associated with a 3%–5% increase in the probability of heat-related death with a 
1–3 day lag (Nastos and Matzarakis, 2012). Beyond heat exhaustion, heat stroke, and other diseases caused by heat, indices such as PET 
also proved to be important indicators of population-level cardiovascular, respiratory, and renal diseases, both directly and through 
other mediators such as air pollution and microbiota diversity (Dastoorpoor et al., 2021; Goldie et al., 2018; Jayasekara et al., 2019; 
Rainham and Smoyer-Tomic, 2003). 

Among all thermal index models, outdoor thermal comfort (OTC) indices refers to the actual thermal sensations that people feel 
outdoors (Kumar and Sharma, 2020). According to the ANSI/ASHRAE Standard 55 (2017), it is defined as “the condition of mind, 
which expresses satisfaction with the thermal environment.” However, its determinants are not limited to the psychological status but 
also include meteorological, physiological, and physical conditions (Chen and Ng, 2012; Coccolo et al., 2016). To date, >165 different 
outdoor thermal comfort indexes have been developed worldwide to quantify outdoor human thermal comfort accounting for human 
physiology (Potchter et al., 2018). Several studies have confirmed that OTC indexes are stronger indicators than single meteorological 
factors in predicting heat-related illnesses, behavioral thermal response, and physiological thermal adaptation (Ohashi et al., 2014; 
Kim and Brown, 2022). 

COMFA (Comfort Formula) is a validated thermal comfort model that evaluates the thermal sensation of people in outdoor en
vironments (Brown and Gillespie, 1986). It was developed to incorporate human–environmental heat exchange and to consider 
microclimate effects on human thermal comfort, and it has been applied in various studies performing thermal exposure assessments 
(Correa et al., 2012; Li et al., 2022; Vanos et al., 2019; Kim and Brown, 2021). COMFA considers a person’s metabolic energy, absorbed 
solar and terrestrial radiation, emitted terrestrial radiation, and convective and evaporative heat exchange in their estimation of 
outdoor thermal comfort. Several studies adopting and refining the COMFA model added additional adaptability factors, including 
physical activity and clothing choices (Kenny et al., 2009; Vanos et al., 2012). A unique advantage of the model is that it outputs result 
in energy flux (W/m2) as a measurement of the total energy budget of a person and further partitions the resultinto individual fluxes. 

In this study, the COMFA model was chosen due to its ability to assess street-level outdoor thermal comfort based on street 
morphological features. Using the energy flux principle and the SVF parameter, the model can distinguish individual physical com
ponents of the built environment and evaluate their contributions to thermal loadings on the human body. This approach enables the 
capture of spatial variations in outdoor thermal comfort, which are modified by street-level environmental features, with high 
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accuracy and validity. Therefore, through the use of the COMFA model, the amount of radiative thermal stress people receives from the 
sky and ground, respectively, when walking along the observed street spots, as well as the amount of solar radiation and terrestrial 
radiation absorbed by people, can be estimated. 

2.3. Assessing street solar geometry using Google Street View imagery 

Recent advancements in utilizing Google Street View imagery for street-level environmental assessments make it possible to 
capture fine-scaled ambient features and mass-process the data for large study areas (Anguelov et al., 2010; Rundle et al., 2011). State- 
of-the-art image recognition and segmentation approaches can be employed to identify objects and elements in studies quantifying the 
amount of sky, building, and greenness in urban areas; assessing urban street morphology and composition; and evaluating perceptions 
and behaviors (Lu, 2019; Middel et al., 2019; Rossetti et al., 2019). 

One measure that can be derived from GSV is Sky View Factors (SVFs), which is a measurement of the proportion of the sky that is 
visible from the ground (Bernard et al., 2018; Oke, 1981). It is a key determinant of street-level outdoor thermal comfort in that it 
controls the amount of solar radiative energy a person can receive at a given location, which is modified by street trees, buildings and 
ground pavement (Kim and Brown, 2022; Kim et al., 2022). Therefore, its values are significantly associated with surface energy 
balance, local air circulation and outdoor thermal comfort (Middel et al., 2019). The less shade, the greater the SVF, which leads to 
increased daytime and decreased night-time air temperature (Yan et al., 2014; Yuan and Chen, 2011) and an increase in human 
thermal discomfort and heat risk (Lin et al., 2013). For densely developed urban areas, outdoor thermal comfort would be highly 
varied spatially and temporally according to the SVFs values due to the high complexity of urban street geometry. This implies that for 
street-level outdoor thermal comfort estimation and street-level heat vulnerability assessment, particularly for census or block-level 
scale, SVFs should be incorporated in their heat exposure estimation process for finer spatial scale resolution. 

In summary, sufficient studies haven’t been undertaken to measure heat hazards and link to policy planning. Despite surging 
interests in conducting HVI studies, current challenges related to HVI centers around the spatial scale mismatches, and the omission of 
biophysiological processes that underly human–environment energy exchange and heat adaptation. Thereby, in-depth analysis of 
human heat exposure using outdoor human thermal comfort models that consider human physiology and thermal adaptation is 
necessary. This study utilizes thermal index models enhanced by SVF values derived from GSV images to examine how areal HVI scores 
are modified by levels of outdoor thermal comfort conditions, as well as their joint effects in determining heat-related healthcare 
facility utilization. 

3. Materials and methods 

3.1. Study area 

Houston, a large metropolis in Southeast Texas, is an ideal study area due to its intensifying urban heat island (UHI) effect and 
increasing risk of heat-related illnesses. It is home to 2.3 million residents with a population density of 1389/km2. Houston has a 
humid subtropical climate with tropical influences, with the warmest month being August at 34.7 ◦C and the coldest month being 
January at 5.7 ◦C (https://www.weather.gov). The UHI effect, often around 1.7 ◦C, can peak at up to 3.3 ◦C due to urban expansion 
associated with growing population and high development density (Streutker, 2003; Conlon et al., 2020). Heat mortality is expected to 
increase by up to 200% for all Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios 
compared to a historical reference period spanning 1991–2010 (Marsha et al., 2016). 

3.2. Development of heat vulnerability index (HVI) 

We conducted an ecological study at the census tract level, with exposure and outcome datasets from multiple sources (See Fig. 2). 
The meteorological datasets were obtained from GridMet, a downscaled weather prediction modeling dataset. The Landsat 8 and 
Sentinel 2 remote sensing images were collected to measure the land surface temperature (LST) and normalized difference vegetation 
index (NDVI). The Sky View Factor (SVF) was quantified using AI algorithm-driven Google Street View Image analysis. The COMFA 
model was applied to estimate physiological outdoor thermal comfort of a person using collected meteorological variables and Sky 
View Factors (SVFs) inputs. The Social Vulnerability Index (SoVI) algorithm and Spatial regression analysis were employed for the 
variable reduction in constructing HVI and evaluating predictive performance of selected heat vulnerability components, respectively. 

3.2.1. Indicator extraction and processing  

1) Heat exposure and built-environment variables. 

Meteorological data and satellite imageries were obtained as heat exposure proxies and utilized as inputs for outdoor thermal 
comfort estimation. Meteorological data were obtained from the GridMET (Abatzoglou, 2013) produced by the Climatology Lab 
(https://www.climatologylab.org/gridmet.html). The data were compiled by interpolating regional reanalysis data using NLDAS-2 
with gridded climate data from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). PRISM has a native 
resolution of 800 km but is filtered down to 4 × 4 km gridded data to allow for easier access (PRISM Climate Group, 2014). GridMET 
provides ~4 km resolution variables such as maximum and minimum daily temperature, precipitation amount, downward surface 
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Table 1 
Summary of HVI indicators (unit, source and description).   

Category Variable Unit Source Description 

Exposure Heat hazard Daytime thermal comfort W/m2 Climatorology lab Estimated daytime energy budget using COMFA 
model - 3 years of averaged daily Max Ta & Slr & Ws, 
averaged daily Min Rh, Slr = 980 w/m2  

Heat hazard Nighttime thermal comfort W/m2 Climatorology lab Estimated nighttime energy budget using COMFA 
model - 3 years of averaged daily Min Ta & Ws, 
averaged daily Max Rh, Slr = 0 w/m2  

Heat hazard Compared heat index – See appendix See appendix section  
Bult environment Sky view factors % Google API 

database 
Derived from Hemispherecal - Google street view 
iamge (GSV), Total N = 10,000 (primary = 7000 / 
secondary = 3000)  

Bult environment Tree view factors % Google API 
database 

Derived from Hemispherecal - Google street view 
iamge (GSV), Total N = 10,000 (primary = 7000 / 
secondary = 3000)  

Bult environment Building view factors % Google API 
database 

Derived from Hemispherecal - Google street view 
iamge (GSV), Total N = 10,000 (primary = 7000 / 
secondary = 3000)  

Bult environment Normalized difference 
vegetation index 

– USGS Sentinel 2 satllite image, Daytime - 3 days (2020-08- 
04, 2019-09-14, 2020-07-06,), cloud cover <3%  

Bult environment Land use % NLCD National Land Cover Database (30*30 m) resolution) 
Sensitivity Pre-existing 

health condition 
Uninsured % BRFSS, CDC Model-based estimate for crude prevalence of current 

lack of health insurance among adults aged 18–64 
years  

Pre-existing 
health condition 

Hypertension % BRFSS, CDC Model-based estimate for crude prevalence of high 
blood pressure among adults aged ≥ 18 years  

Pre-existing 
health condition 

Asthma % BRFSS, CDC Model-based estimate for crude prevalence of current 
asthma among adults aged ≥ 18 years  

Pre-existing 
health condition 

Diabetes % BRFSS, CDC Model-based estimate for crude prevalence of obesity 
among adults aged ≥ 18 years  

Pre-existing 
health condition 

Obesity % BRFSS, CDC Model-based estimate for crude prevalence of 
diagnosed diabetes among adults aged ≥ 18 years  

Demographic population density Per Sq. 
Mile 

ACS 2018 (5-Year 
Estimates) 

Population density  

Demographic age_under5 % ACS 2018 (5-Year 
Estimates) 

population under 5 5ears  

Demographic age_65over % ACS 2018 (5-Year 
Estimates) 

population 65 years and over  

Demographic non_White % ACS 2018 (5-Year 
Estimates) 

population other than White  

Demographic Hispanic_Latino % ACS 2018 (5-Year 
Estimates) 

Hispanic or Latino population  

Social isolation Living Alone % ACS 2018 (5-Year 
Estimates) 

Householder living alone  

Social isolation Living Along_65over % ACS 2018 (5-Year 
Estimates) 

Householder 65 years and over, and living alone  

Social isolation English Ability_not Well % ACS 2018 (5-Year 
Estimates) 

Language Spoken at Home not well or not at all  

Social isolation disability % ACS 2018 (5-Year 
Estimates) 

Population with disability 

Adaptive 
capacity 

Socio-economic 
status 

less_highSchool % ACS 2018 (5-Year 
Estimates) 

Population 25 years and over, and less than high 
school  

Socio-economic 
status 

below_povertLevel % ACS 2018 (5-Year 
Estimates) 

Ratio of Income in 2018 to Poverty Level under 1.0  

Socio-economic 
status 

Unemployment % ACS 2018 (5-Year 
Estimates) 

Unemployed  

Socio-economic 
status 

FemHousHold % ACS 2018 (5-Year 
Estimates) 

Females head of household  

Mobility No vehicle % ACS 2018 (5-Year 
Estimates) 

Households without vehicle  

Home amenity AC prevalence %    
Building & 
housing quality 

Units_perSqmi Count/ 
sq. mile 

ACS 2018 (5-Year 
Estimates) 

Housing units  

Building & 
housing quality 

buildingAge_before1970 % ACS 2018 (5-Year 
Estimates) 

Year structure built before 1970  

Building & 
housing quality 

buildingAge_before1980 % ACS 2018 (5-Year 
Estimates) 

Year structure built before 1980  

* BRFSS, CDC, ACS, USGS, NLCD. 
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shortwave radiation, wind velocity, and relative humidity. The data used in this study span from 2018 to 2020 and cover the City of 
Houston. 

Satellite imagery data were acquired to estimates Land Surface Temperature (LST) and the Normalized Difference Vegetation Index 
(NDVI) (See Fig. 3). The Landsat 8 OLI/TRIS images, preprocessed by the USGS, were used to calculate LST with a 30-m spatial 
resolution. Four imageries retrieved using the Radiative Transfer Equation (RTE) method were selected based on three criteria (See 
Appendix Eq. 1): <10% cloud cover, sunny days with no prior precipitation, and images with no scan errors taken during July or 
August between 2018 and 2020. Sentinel-2 Level 1 imagery, obtained from ESA’s Copernicus Open Assess Hub, was used to calculate 
NDVI. NDVI is an indicator used to evaluate the density of green healthy vegetation, calculated as the ratio between top-of-atmosphere 
reflectance of a red band around 0.66 μm and a near-infrared (NIR) band around 0.86 μm. The spatial resolution of the Sentinel-2 
imagery was 30 m, matching the Landsat 8 data. The collection dates of Sentinel-2 imageries were close to the Landsat 8 imagery’s 
capture dates during July or August between 2018 and 2020. 

Air conditioning and Housing quality data were collected as adaptive capacity proxies. Air conditioning data obtained from the 
Harris County Appraisal District (HCAD) were utilized, which describes the types of cooling systems in the structures of each parcel in 
Houston. This variable specified whether there is central air conditioning (A/C) and whether there is any A/C. For each parcel, we 
considered A/C available if at least one structure has A/C (as it is common for sheds and other storage structures to be built on a 
property). We then calculated the percentage of parcels with A/C and central A/C at the census tract level. Regarding housing quality, 
we utilized the following data from the 2018 5-year American Community Survey reflecting the housing quality at the census tract 
level: housing units, the proportion of structures built before 1970, and the proportion of structures built before 1980 (United States 
Census Bureau, 2019).  

2) Demographic and chronic disease variables. 

Demographic data at census tract level were obtained from the 2018 5-year American Community Survey. These include popu
lation density, land area, the proportion of the population aged under 5 years, the proportion of the population aged 65 years and over, 
the non-White proportion of the population, the Hispanic or Latino proportion of the population, the proportion of householders living 
alone, the proportion of householders aged 65 years and over and living alone, the proportion of the population without a high school 
diploma, the proportion of the population living in poverty, the proportion of the population with disability, the proportion of the 
population that is unemployed, the proportion of households without vehicles, and the proportion of householders that are female 
(United States Census Bureau, 2019). 

Census tract level pre-existing chronic disease factors were collected from the report released by the Behavioral Risk Factor Sur
veillance System (BRFSS) of the Centers for Disease Control and Prevention (CDC) in 2019. The pre-existing chronic disease measures 
we used were estimated crude prevalence of high blood pressure, asthma, obesity, and diagnosed diabetes among adults, as well as the 
estimated rate of lack of health insurance among adults (Centers for Disease Control and Prevention, 2019).  

3) Heat-related disease data. 

Emergency department (ED) visit data between January 2016 and June 2021 were obtained from the Texas Center for Health 
Statistics, Department of State Health Services. This dataset includes inpatient and outpatient records from approximately 500 hos
pitals or facilities in Texas coded based on the International Classification of Diseases, 10th revision (ICD-10). Due to data sharing and 
confidentiality constraints, patients’ geographic information was only released at the zip code level, and dates of visits were un
available. To identify heat-related ED visit, we selected records that had diagnoses belonging to T67 (effects of heat and light) and X30 
(exposure to excessive natural heat) classifications, which covered heat stroke, heat syncope, heat cramp, heat exhaustion, heat fa
tigue, heat edema, and other unspecified diseases due to effects of heat. We then computed counts at the level of zip code tabulation 
area (ZCTA) and calculated the population-weighted counts using census tracts as units, by identifying ZCTAs that intersect with each 
census tract and deriving weighted average by population. Data extraction and preparation were conducted in R. 

3.2.2. HVI construction 
To measure the heat vulnerability in the city of Houston, we constructed an HVI to assess the multi-dimensional aspects of com

munity vulnerability, which included heat exposure, sensitivity, and adaptive capacity. The index was developed to reveal the unequal 
spatial distribution of heat vulnerability at the census tract level and how it was associated with street-level outdoor thermal comfort 
conditions. The five heat vulnerability components were identified using the principal components analysis (PCA): chronic disease, 
heat exposure, social isolation, street features, and AC prevalence. Census tracts were chosen as the primary spatial reference unit for 
our index construction and vulnerability evaluation. The following three major steps were taken for HVI construction. 

First, the potential variables necessary for vulnerability proxies were obtained from publicly available demographic, socio- 
economic, and spatial data at the census tract levels. At the initial stage, 31 variables were acquired and compiled in terms of heat 
exposure, sensitivity, and adaptive capacity indicators from BRFSS, CDC, ACS, USGS, and NLCD (Table 1). After all the data were 
computed and normalized, 15 variables were derived and selected for heat vulnerability construction after testing for multicollinearity 
among the variables. 

Second, to construct the heat vulnerability index, principal component analysis was used as a primary statistical method to reduce 
the dimensionality of the datasets. This technique minimizes the number of original variables that load highly on any one factor and 
increases the variation among factors. Accordingly, it helps to identify dominant factors determining heat vulnerability. We retained 
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the five factors that had eigenvalues greater than one. The eigenvalue represents the concentration of variability in a correlation 
matrix. Thus, we choose the factor with the highest eigenvalue to include the maximized variability in our model. The Kaiser-Meyer- 
Olkin (KMO) measure of sampling adequacy was used to check data suitability for PCA and exclude the variables with KMO values 
smaller than 0.5. The identified five factors are described in Table 2, and the title of each component is given according to the dominant 
variables with a higher coefficient of factor loadings for each component group. 

Lastly, the five components were aggregated into a single measurement unit to present an overall score of heat vulnerability for 
each census tract. For indicator composition, this study adopted an additive model (or un-weighted quotative aggregation) suggested 
by Cutter et al. (2003), which assumes all components are equally important and linearly related to the overall sum. Additionally, to 
estimates the impact of HVIs values on heat-related disease, the multivariate statistical techniques were selected (Harlan et al., 2013; 
Conlon et al., 2020). As a proxy for the dependent variable, the number of heat-related emergency department visits were used. 
Specifically, spatial leg models were chosen for producing regression coefficients as weighting values to control the spatial 
dependency. 

3.2.3. Statistical analysis 
Cluster analysis and spatial regression analysis were conducted based on the HVI scores and street-level outdoor thermal comfort 

(OTC) values. For the cluster analysis, the Bivariate Local Indicator of Spatial Association (LISA) cluster was used to map the hot spots 
of HVI and street-level OTC of the targeted study area at census tracts. Using the local Moran’s I value, LISA provides the statistic of 
spatial association for each location with an assessment of significance while estimating a proportional relationship between the sum of 
the local statistics and a corresponding global statistic (Anselin, 2002). This analysis is mainly performed using ArcMap and Geoda 
software. 

The associations between HVI, street-level outdoor thermal comfort (OTC), and heat-related disease were estimated using spatial 
leg models. Specifically, we focused on the effects of heat vulnerability components on the number of emergency department (ED) 
visits according to the different levels of street-level OTC. To achieve this, three separate models of two groups were generated for all 
levels, including high-level (hot spots) and low-level (cold spots) OTC, to reveal the changes in the vulnerability impacts related to 
street-level OTC. The spatial lag model (SLM) was employed because the Moran’s I test observed a significant spatial autocorrelation in 
their datasets. This regression method postulates that the residuals could be a result of autocorrelation in the dependent variable while 
dealing with spatial interaction issues and heterogeneity in residuals of regression models (Paelinck, 1978; LeSage, 2008). A series of 
statistical tests – Akaike Information Criterion (AIC) / Bayesian Information Criterion (BIC) test, and Lagrange Multiplier (LM) tests – 
were also performed for model selection and development. 

3.3. Estimation of outdoor human thermal comfort (OTC) 

3.3.1. COMFA energy budget model 
The COMFA (Comfort Formula) model was selected to estimate the physiological thermal comfort, which serves as the exposure 

indicator of our heat vulnerability model. It is described as follows: 

E = M +R − C − K − ΔS (1)  

where ΔS is the change in heat storage (W/m2), which is equal to zero at energy balance, above zero at energy surplus, and below zero 
at energy deficit, with the major energy streams being convective heat loss (C), evaporative heat loss (E), conductive heat loss (K), 
radiative exchanges (R), and metabolic heat production within the body (M) (Brown and Gillespie, 1986; Vanos et al., 2012). We used 
basic COMFA parameter settings that included a metabolic rate of a walking person of 190 W/m2, at a standard walking speed of 1.4 
m/s, and summer clothing insulation (T-shirt, short pants, socks, running shoes; clothing resistance (s/m) of 32.78; and clothing vapor 
resistance (s/m) of 46.46). 

3.3.2. Google Street View Image-derived SVFs 
GSV2SVF, an interactive GIS tool, was employed to acquire SVF values using the Google Street View (GSV) Image. The tool uses a 

deep learning AI algorithm developed by Liang et al. (2017, 2020) to extract the information from the GSV Image Database. The AI 
algorithm automates sky delineation using the aconvolutional neural network of SegNet, which classifies GSV pixels into sky, vege
tation, and building in the form of hemispherical images (Liang et al., 2017, 2020). Based on these hemispherical images, the SVF is 
calculated according to the formulation below. 

Table 2 
Identified components and dominant variables (PCA analysis).   

Dimension Proportion explained (%) Dominant variable Correlation 

1 Chronic disease 46.82 Obesity, Diabetes, Asthma 0.3707 
2 Heat exposures 12.85 LST, Ta_Max 0.6324 
3 Social isolation 11.84 Living alone, Unemploy 0.3304 
4 Street features 8.97 SVF, TVF 0.5085 
5 AC-prevalence 6.21 Air conditioning central 0.5035  
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SVF =
∑n

i=0
w*sky(i)

/
∑n

i=0
w (2)  

f(i) = 1, if alpha = 0 (pixel is sky)
0, if alpha > 0 (pixel is not sky) (3) 

In these equations, n is the total number of pixels, w is a weight associated with each pixel, and sky (i) is a binary function 
determined by whether the sky is visible at a pixel. 

Employing a systematic sampling of observation spots along all the major streets of Houston, we obtained a sample location for 
every 100 m, which represent a good proxy of the pedestrian population density across accessible urban areas (City of Houston, 2020). 
A total of 11,200 sampling points were generated, evenly distributed over the city of Houston area (Fig. 3). SVF values were calculated 
for each sampling location and utilized in the COMFA models described above. 

4. Results 

4.1. Assessing heat vulnerability and street-level outdoor thermal comfort 

The heat vulnerability and street-level outdoor thermal comfort (OTC) were assessed to explore their spatial patterns and identify 
their key determinants. The heat vulnerability index (HVI) score for 614 census tracts ranged from − 9.3 to 19.3, with a mean score of 
0.01, a slightly right-skewed distribution, and a median of − 0.2. The energy budget (EB) value, a street-level OTC measure, was 
between 126.7 W/m2 and 159.1 W/m2. The mean value of the energy budget for all census tracts was 147.7 W/m2, falling under the 
‘preferred to be cooler’ classification, suggesting that this figure was thermally hot and uncomfortable. According to the COMFA’s 
thermal threshold categorization (Kenny et al., 2009a, 2009b), approximately 30% and 70% of the census tracts exhibited values 
classified as ‘prefer to be much cooler (hot: over 150 W/m2)’ and ‘prefer to be cooler (warm: 50 – 150 W/m2)’ during the summer 
months, respectively. 

To effectively identify the spatial patterns of heat vulnerability index and street-level outdoor thermal comfort, two types of maps – 
raw score and hot spot – were used (See Fig. 4). The left two maps of Fig. 4 indicate the spatial distribution of raw scores of heat 
vulnerability index and street-level outdoor thermal comfort values in Houston. The right two maps show clusters of hot and cold spots 
with significant local Moran’s I statistics at a p-value of 0.05 based on their scores and values. The red area is the cluster of the hot spot 
where the heat vulnerability and outdoor heat stress are higher than their averages; meanwhile, the blue area is the cold spot where 
they are lower than their averages. These maps demonstrate the uneven patterns of spatial distributions and variations of heat 

Fig. 1. City of Houston: Region and District Map. 
** Note: District name - District A (Central west), District B (North), District C & H (Central city), District D (South), District E (Northeast), District I 
(Southeast), District F, G, J & K (Southwest). 
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vulnerability and outdoor thermal comfort, which presented the most thermally vulnerable areas where attention is warranted. 
Regarding the hot and cold spots, heat vulnerability and outdoor thermal comfort showed different spatial patterns that partially 

overlapped with each other (See locator map of Fig. 1 and Fig. 4). For heat vulnerability, the census tracts located in the downtown 
bounded by Interstate 610 and the southeast area exhibited cold spots, or clusters of low heat vulnerability, whereas most sections of 
hot spots, or clusters of high heat vulnerability, were located in the north (District B), southeast (District I), and southeast section of 
District E, between Interstate 610 and Beltway 8 (See Fig. 1). Compared to heat vulnerability, outdoor thermal comfort showed a 
distinct pattern with mostly contagious clusters of hot and cold spots. Most central west (District A) and southwest (Districts G & J) 
areas were classified as hot spots, while most northeast (District E) and southeast (District I) areas were classified as cold spots. When 
comparing the spatial distributions of the HVI and OTC, some overlaps existed in the north (District B) and southeast sections of District 
E. Notably, the downtown area is not vulnerable, exhibiting a cluster of cold spots indicating that is relatively thermally comfortable. 

Fig. 2. Methodological steps taken in the study.  
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Fig. 5 displays an in-depth examination of the five heat vulnerability components that were extracted to form the heat vulnerability 
index. These included chronic disease, heat exposure, social isolation, street features, and A/C prevalence, which were created by 
principal component analysis (PCA). The spatial distributions of each component are also presented in Appendix Fig. 1. The patterns of 
chronic disease, social isolation, and street features mostly coincided spatially with the overall patterns of HVI hot spots. Meanwhile, 
not surprisingly, hot spots of heat exposure and partial areas of street features largely overlapped with hot spots of street-level OTC 
located in the central west (District A) and southwest (District G & J). Detailed explanations of the distribution for individual heat 
vulnerability components are as follows. 

The first component, chronic disease, represented pre-existing health conditions such as diabetes and obesity. Its vulnerability score 
was relatively higher in the north (District B), southeast (District I) and south (District D) areas of Houston, except for the central city 
(Districts C & H). The cold spots in the central city area stretched to the central west (District A) and southwest (Districts G & J). Hot 
and cold spots of chronic disease largely overlap with those of HVI. However, for the street-level OTC, only cold spots in the southeast 
section of District E intersected the chronic disease map. 

The second component, heat exposure, referred to the meteorological thermal conditions combining ambient temperature (Ta) and 

Fig. 3. Map of Landsurface temperture (LST), Normalized vegetation index (NDVI) and Sky view factors (SVFs).  
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land surface temperature (LST). Hot spots were located in the central city, central west, and north areas of Houston. Cold spots were 
clustered in the south, southeast, and northeast areas. This is largely due to the land use patterns of city development and the amount of 
greenery concentrated in the west section of Houston. As expected, the spatial pattern of heat exposure was highly similar to that of 
street-level OTC. 

The third component of street features was street-level built environment features that affect the amount of direct sunlight reaching 
the ground. Spatial patterns of street features largely matched with both HVI and street-level OTC. Cold spots were located in the 
central city (District C & H), which overlapped with HVI. Hot spots in the central west (District A) partially matched those of street- 
level OTC. 

Lastly, the fourth and fifth components were social isolation and A/C prevalence. These were related to the ratio of individuals and 
older individuals living alone and with air conditioning systems, respectively. Only limited areas of social isolation hot spots in the 
central city (Districts C & H) and south (District E) areas spatially overlapped with those of HVI. The central city was identified with hot 
spots on the HVI map but with cold spots on the social isolation map. Regarding the A/C prevalence, cold spots in the city area only 
overlapped with those of HVI, with no intersections with either the hot or cold spots of street-level OTC. 

Table 3 demonstrates the difference between hot and cold spots in the mean score of HVI and the value of street-level outdoor 
thermal conditions. For the HVI scores, the gaps between hot and cold spots were the largest for chronic disease at 4.0 and the least for 
social isolation at 0.2. For the outdoor thermal conditions, the differences between hot and cold spots in mean values of energy budget 
(EB), land surface temperature (LST), and ambient temperature (Ta) were 8.9 W/m2, 2.7 ◦C, and 0.5 ◦C, respectively. Considering their 
difference of degree in standardized values, energy budget values (|SD| = 1.8) and surface temperature (|SD| = 0.6) showed relative 
higher spatial variations among the clusters compared to ambient temperature (|SD| = 0.2). This result illustrated that EB values and 
LST are superior indexes than Ta for heat vulnerability assessment given that they better reflect the spatial variation of heat 
vulnerability. 

4.2. Association between heat vulnerability and outdoor thermal conditions 

The coefficient of Pearson’s correlation is reported in Table 4, which shows the degree and direction of the association. Energy 
budget (EB) values and HV scores had a strong and moderative positive relationship with heat exposure at 0.781 (p = 0.1) and 0.385 (p 
= 0.1) separately, which derived from the measurement of Ta and LST. On the other hand, street features and chronic disease showed a 

Fig. 4. Spatial distribution of heat vulnerability index scores (a) and street-level outdoor thermal comfort values (c) and their hot and cold spots (b 
and d) in Houston census tract (N = 614). 
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Fig. 5. Hot and cold spots of five identified components of heat vulnerability. 
** Note: District name - District A (Central west), District B (North), District C & H (Central city), District D (South), District E (Northeast), District I 
(Southeast), District F, G, J & K (Southwest). 
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Fig. 6. Bivariate LISA Cluster analysis between heat vulnerability and street-level outdoor thermal comfort of energy budget values (W/m2).  
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moderate negative (r = 0.484, p = 0.1) and a weak positive (r = 200, p = 0.1) relationship with EB values respectively. Not sur
prisingly, the correlation coefficient between energy budget values and A/C prevalence was not statistically significant (r = 0.055). 
Furthermore, the association between EB values and HVI scores was weak at 0.267 (p = 0.1), possibly due to the fact that HVI scores 
were largely affected by socio-economic variables, as shown in the high correlation coefficient of chronic disease at 0.735 (p = 0.1) and 
social isolation at 0.322 (p = 0.1). 

Map (a) of Fig. 6 displays the Bivariate Local Indicator of Spatial Association (LISA) cluster map of HVI. The Bivariate LISA shows 

Fig. 7. Binary linear-relationship of heat vulnerability index scores with street-level outdoor thermal conditions and physical street design features.  
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the locations of similar high and low values of HVI scores and street-level OTC while testing for neighboring polygons. With the 
significance at 0.05, the areas highlighted in red are the clusters of hot spots, where high HVI values coexisted with high energy budget 
values in neighboring census tracts. The areas highlighted in blue are the clusters of cold spots, where lower HVI values were observed 
adjacent to lower energy budget values. According to the LISA map, part of the southeast, central west, and north section fell into the 
hot spots with higher HVI scores and higher energy budget values. Conversely, the far east section, such as northeast and southeast 
close to the boundary of Houston city, was classified as having cold spots with lower HVI scores and lower energy budget values. In 
these cluster areas, the HVI scores were relatively sensitive to street-level OTC conditions; thus, their relationship would be more 
substantial than in other sections of Houston. 

The bivariate LISA maps between the four components of HVI (i.e., chronic disease, heat exposure, social isolation, and street 
features) and street-level OTC were further mapped using local Moran’s I value to explore their Hot and Cold spots (Map (b) of Fig. 6). 
The A/C prevalence component was excluded, as its Pearson correlation with energy budget values was not significant (Table 4). As the 
global Moran’s I value indicated, all the components except for social isolation were spatially correlated with energy budget values. 
Heat exposure had the highest global Moran’s I value at 0.582, and then street features at 0.291 and chronic disease at 0.153 were 
followed, whose order of strength association was similar to the Pearson’s correlation results displayed in Table 4. 

We have further explored the street-level factors of thermal conditions and physical street design influencing the HVI scores 
(Fig. 7). The factors of thermal conditions include energy budget (EB), land surface temperature (LST), absorbed solar radiation of 
people (Kabs), and absorbed terrestrial radiation of people (Labs). 

Binary relationships between HVI scores and factors of street-level thermal conditions are presented in the scatter plot (a) of Fig. 7. 
According to the binary plots, all four factors of thermal conditions had positive relationships with HVI scores. Looking at individual 
variables, energy budget values had a positive relationship with HVI and the highest explanatory power in describing the variations of 
HVI, with adj-r2 values of around 36%. Meanwhile, the explanatory powers of LST and Kabs were moderate at 10.51% and 18.79%, 
respectively. Labs had the least adj-r2 of 2.94%. These plots implied that the human outdoor thermal comfort index is a superior 
indicator of heat-related risks compared to single meteorological factors such as LST, Kabs, and Labs. 

Two plots (b) of Fig. 7 illustrate the relationships between HVI scores and physical street design features. Tree View Factors (TVFs) 
and Sky View Factors (SVFs) are dominant built environmental indicators that determine the outdoor thermal comfort of people 
walking at the street scales. They had moderate explanatory power ranging between 15.0% and 18.6% in predicting the variation of 

Table 3 
Difference between hot and cold spots in heat vulnerability index scores (N = 124) and outdoor thermal condition values (N = 127).   

Cold spot Hot spot  Δ Diff (Hot-Cold)  

N Mean SD N Mean SD Δ SD 

Heat vulnerability components 
Chronic disease 124 − 2.1 1.9 184 1.9 1.7 4.0 − 0.2 
Heat exposures 124 − 0.4 1.9 184 0.1 1.0 0.4 − 0.9 
Social isolation 124 0.3 1.1 184 0.0 1.5 0.2 0.4 
Street features 124 − 0.7 1.1 184 0.4 0.9 1.1 − 0.2 
AC-prevalence 124 − 0.4 0.6 184 0.1 1.1 0.5 0.5  

Outdoor thermal conditions 
EB (W/m2) 127 141.8 5.6 247 150.7 3.8 8.9 − 1.8 
LST (◦C) 127 27.6 1.7 247 30.3 1.1 2.7 − 0.6 
Ta (◦C) 127 34.0 0.3 247 34.5 0.1 0.5 − 0.2  

Table 4 
Pearson’s correlation for heat vulnerability index scores, its components and street-level outdoor thermal comfort values in Houston census tract (N =
614).   

(1) (2) (3) (4) (5) (6) (7) 

(1) EB value 1.000       
(2) HV score 0.267*** 1.000       

(0.000)       
(3) Chronic disease 0.200*** 0.735*** 1.000      

(0.000) (0.000)      
(4) Heat exposures 0.781*** 0.385*** 0.000 1.000     

(0.000) (0.000) (1.000)     
(5) Street features − 0.484*** 0.370*** 0.000 0.000 1.000    

(0.000) (0.000) (1.000) (1.000)    
(6) Social Isolation − 0.049 0.322*** 0.000 0.000 0.000 1.000   

(0.268) (0.000) (1.000) (1.000) (1.000)   
(7) AC-prevalence 0.055 0.268*** 0.000 0.000 0.000 0.000 1.000  

(0.215) (0.000) (1.000) (1.000) (1.000) (1.000)  

P-value in parentheses | *** p < 0.001, ** p < 0.01, * p < 0.05. 
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HVI scores, but their directions of impact were opposite to each other. As TVFs increased, HVI scores declined because less solar 
radiation reached the ground. Meanwhile, SVFs elevated the HVI scores, as larger openness of streets with less greenery results in 
receiving more sunshine, leading to increased LST and OTC. 

4.3. Impact of heat vulnerability and outdoor thermal comfort on heat-related illnesses 

Table 5 displays heat vulnerability components’ impact on the number of emergency department (ED) visits by street-level outdoor 
thermal comfort. The five components of heat vulnerability were significantly associated with the number of ED visits but yielded 
different coefficients in the high versus low clusters of energy budget (EB) values. 

The predictive performance of our suggested model for the number of ED visits was approximately 25% on average, but signifi
cantly relies on EB values. The area with high EB values (over 200 W/m2) had a relatively higher explanatory power (adj-R2) of 29.0% 
for the OLS model and 37.9% for the SLM model (Appendix Table 3). For the low (vs. high) EB value areas, both models’ explanatory 
power was much lower at approximately 8.7%. These results illustrated that our heat vulnerability index had a high explanatory power 
when assessing the areas that suffered from higher levels of outdoor human thermal stress. We thus concluded that SLM specification is 
the preferred approach. When the spatial autocorrelation, and specifically the spillover effect, was accounted for by the SLM model, the 
explanatory power considerably increased by around 8.0% compared to OLS model. Furthermore, the LM test indicated SLM speci
fication is preferred, and AIC/BIC tests showed the parsimonious values with SLM. Direct and indirect estimations of SLM were 
presented in Appendix Table 4, 5 and 6. 

Regarding the effects of the five individual heat vulnerability components on ED visits, their degrees of impact were statistical 
significance across the appropriate models. In the SLM model specification, for all levels of EB value areas, the variables of chronic 
disease and hot spots were significant statistically at a p-value of 0.05. We assumed that this is mainly due to the binary variable of hot 
and cold spots introduced in the model. For the high-EB value areas, heat exposure and street features have a positive and significant 
relationship with the number of ED visits. Meanwhile, none of the variables were statistically significant in low-EB value areas. This 
means that chronic disease was the most influential determinant of heat vulnerability for all levels of EB value, while the effects of 
other variables can vary significantly depending on the EB values and the analytical models adopted. 

5. Discussion 

The results of this study highlight the relationship between heat vulnerability, outdoor thermal comfort, and heat-related disease in 
the city of Houston. We identified five heat vulnerability components – chronic disease, heat exposure, social isolation, street features, 
and A/C prevalence – while exploring the clusters of vulnerability hot spots. It was found that heat vulnerability index scores have a 

Table 5 
SLM specification: Impact of heat vulnerability components on number of ED visits by street-level outdoor thermal comfort.   

All levels-EB values 
(All spots) 

High-EB values 
(Hot spot) 

Low-EB values 
(Cold spot) 

Chronic disease 0.617** 0.359 0.563  
(0.188) (0.286) (0.393) 

Heat exposures 0.360 2.358** − 0.159 
(Meteorological status) (0.472) (0.839) (0.793) 
Social isolation − 0.384 − 0.650 0.015  

(0.379) (0.592) (0.760) 
Street features 0.738 1.760* − 0.350 
(openness & less green) (0.423) (0.736) (0.702) 
AC-prevalence 0.934 0.263 − 0.120  

(0.503) (0.794) (1.106) 
Hot & Cold spot    
- Hot spot − 2.581*    

(1.243)   
- Cold spot − 0.467    

(1.477)   
_Cons 8.778*** 3.861* 38.945***  

(1.426) (1.528) (2.406) 
Var (ED visit) 100.044*** 0.828*** 0.798***  

(6.483) (0.038) (0.057) 
N 515 247 127 
Adj. R2 & Pseudo R2 0.231 0.379 0.087 
Mean VIF – – – 
Global Moran I’s – – – 
Wald test 0.805 0.827 0.798 
Log-likelihood − 1959.228 − 920.553 − 484.60 
AIC/BIC test 3938.45/3980.89 1857.10/1885.18 985.21/1007.97 

Standard errors in parentheses | *** p < 0.001, ** p < 0.01, * p < 0.05. 
Num of ED visits = inbound + outbound patients. 
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strong positive bivariate relationship with street-level outdoor thermal conditions of EB and Kabs and with physical street design 
features of TVFs. Our multivariate models showed that the greater the heat vulnerability score and street-level outdoor thermal 
comfort were, the better the models performed in explaining the variation of the number of ED visits, representing a unique finding of 
this study. 

Our hotspot cluster analysis (LISA) identified slightly different spatial patterns between the heat exposure component of the heat 
vulnerability index (HVI) and street-level outdoor thermal comfort (OTC) (See Fig. 6). The clusters of hot and cold spots only partially 
overlapped between the two, indicating a difference in locating the high thermal areas according to the heat stress evaluation method 
and indicator selection. Two possible explanations can be proposed for this phenomenon. First, street-level OTC only includes public 
spaces such as streets, parks, and plazas that residents can access or use in our street-level thermal comfort evaluation. Therefore, 
forests, rivers, seacoasts, meadows, and building rooftops are excluded from the assessment, as accessible routes did not exist in these 
areas and therefore Google Street View images were unavailable. Therefore, our analysis results are closer to the actual heat exposure 
level of urban residents because only outdoor public spaces urban residents use were assessed. 

Second, street-level OTC measures the physiological thermal comfort that is close to the actual thermal sensation of urban resi
dents, which meteorological factors cannot easily capture. To calculate the HVI’s heat exposure component, single meteorological 
indicators of Ta and LST were utilized. Meanwhile, energy budget values (W/m2) were estimated using multiple sets of meteorological 
parameters (Ta, LST, Rh, and Slr) while considering principles of the human energy budget model. Specifically, during the hot summer 
daytime, high temperatures combined with higher relative humidity and stronger wind speed are likely to cause higher thermal stress 
than people may actually feel according to the recorded ambient temperature, which can be captured by outdoor thermal comfort 
indexes (Kim and Brown, 2022). Moreover, the COMFA model considers short- and long-wave solar radiation determined by street 
morphological features using SVFs parameters, which allows us to estimate microclimate conditions at the street scale required for the 
calculation of human outdoor thermal comfort. 

Our analysis results indicated that chronic disease and heat exposure components strongly impacted HVI while showing high 
Pearson’s correlation coefficient and Local Moran’s I statistics (See Table 4 and Fig. 6). This result implies that these are major de
terminants of HVI scores with relatively stronger influences. These findings are similar to past study results illustrating that pre- 
existing health conditions, specifically diabetes and stroke, as well as higher Ta and LST, are significant contributors to heat- 
related disease and vulnerability index scores (Prudent et al., 2016; Christenson et al., 2017). Meanwhile, A/C prevalence is not 
significant in our findings, in contrast to similar past studies (Reid et al., 2012; Sharma et al., 2018). We assume this discrepancy is 
mainly due to the high thermal threshold of people living in Houston – Texans who are familiar with hot summer weather conditions in 
this humid subtropical climate. Another possible reason is the higher rates of A/C prevalence than in other US regions because Texas 
law or lease agreements may require landlords to protect their tenants against extreme temperatures or repair a faulty A/C unit 
(Section 92.052 of the Texas Property Code). 

Our multivariate model illustrated that the relationship between heat vulnerability and ED visits depends on street-level outdoor 
thermal comfort (Table 5). In the clusters of census tracts with higher energy budget values, our model had higher performance, 
whereas thermal cold spots had relatively lower explanatory power. Specifically, in areas with higher energy budget values and a 
higher HVI score, our model showed improved predictive power in explaining the variation in the number of ED visits. These findings 
imply that outdoor thermal comfort conditions are significantly associated with the relationship between HVI scores and the frequency 
of heat-related diseases, showing the potential applicability of the energy budget model-based outdoor thermal comfort index to heat 
vulnerability assessment. Therefore, future studies should develop methodology or techniques to incorporate the outdoor thermal 
comfort index into the vulnerability assessment. 

Despite our study’s novelty, one notable limitation exists. The temporal mismatch of some datasets may have affected the model 
estimations. Most of the datasets used were collected from 2018 to 2020. However, due to the data availability, the satellite imageries 
(Landsat8 and Sentinel) used in this study were collected for only three days in the summer months of 2019 and 2020, which were not 
precisely corresponding to collection periods of the socio-economic, built environment, and pre-existing health condition variables. 
This inconstant may decrease the explanatory power of our suggested models. 

6. Conclusion 

This study explores the interrelationship among outdoor thermal comfort (OTC), the heat vulnerability index (HVI), and heat- 
related illnesses in Houston. The results indicated that our models have better explanatory power over the number of emergency 
department (ED) visits when there are higher HVI scores and more comfortable street-level OTC. A positive relationship was found 
between HVI scores and EB values, with an adj-r2 of approximately 36%. Chronic disease and heat exposure significantly impacted the 
HVI, while tree and sky view were key determinants of the EB values. 

Our study addresses gaps in the current understanding of heat-related risks by (1) assessing spatially explicit heat exposure factors 
at the street level and (2) taking into account human physiological responses to thermal stress. This provides a new approach to 
evaluating heat vulnerability and exposure at the human scale, which offers scholars, planners, and policymakers effective evaluation 
tools and guidelines to address the increasing risk of urban heat islands and heat-related diseases. Moreover, in the era of climate 
change, this study also supports the Sustainable Development Goals (SDGs) by promoting the equitable distribution of resources. This 
can be accomplished through the suggested heat vulnerability assessment in this study, which focuses on people and socio-economic 
factors aimed at mitigating the climate change risk. 

Future studies should aim to obtain temporally matched datasets to improve the explanatory power of models. As discussed 
previously, the temporal mismatch of some datasets may have affected the model estimations in this study. Therefore, future studies 
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should match the collection periods of satellite imagery with those of the socio-economic, built environment, and pre-existing health 
condition variables. Secondly, further investigation is necessary to explore the relationship between heat-related illnesses and outdoor 
thermal comfort at different times of day and seasons. This is necessary for the effective evaluation of urban heat mitigation strategies. 
Lastly, future studies should investigate the predictive performance of empirical models for heat-related diseases using various heat 
indexes for practical applications in the real world. 
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Appendix A. Appendix  

Appendix Table 1 
Variables used in the literature to represent human heat exposure/stress.   

Climate factors Variables Example studies 

1 Land surface temperature Land surface temperature Aminipouri et al., 2016; Johnson et al., 2012; Morabito et al., 2015 
2 Air temperature Day/night temperature Zhang et al., 2019   

Heatwave days Tran et al., 2020; Kim et al., 2017 
3 Solar radiation Street incoming solar radiation Maragno et al., 2020   

Roof incoming solar radiation Maragno et al., 2020 
4 Thermal index WBGT Zheng et al., 2020   

Humidex Aminipouri et al., 2016; Krstic et al., 2017  

Appendix Eq. (1) Radiative Transfer Equation (RTE) 
This study adopts the Radiative Transfer Equation (RTE) method to calculate Landsat 8 derived -Land Surface Temperature (LST). 

LST retrieval through RTE involves modeling the radiative transfer processes within the Earth’s atmosphere and the interaction be
tween the surface and the atmosphere. It involves atmospheric correction, applying the Split-Window algorithm, and calibration/ 
validation to improve accuracy. 

The Radiative Transfer Equation (RTE) is a complex mathematical equation that describes the radiative energy transfer in the 
atmosphere. It is typically represented as: 

I(λ) = T(λ)*
[

E s(λ)* τ s(λ)* ρ s(λ)+
∫

(E a(λ)* τ a(λ)* ρ a(λ)* T a(λ)* exp.( − τ(λ) ) )* dτ
]

(1) 

In this equation, I(λ) represents the measured radiance at a specific wavelength (λ), T(λ) is the atmospheric transmittance, E_s(λ) 
and E_a(λ) are the surface and atmospheric emittances respectively, τ_s(λ) and τ_a(λ) are the surface and atmospheric transmittances, 
ρ_s(λ) and ρ_a(λ) are the surface and atmospheric reflectances, T_a(λ) is the atmospheric temperature, τ(λ) is the optical thickness, and 
the integral term represents the summation of radiative contributions from different atmospheric layers. 
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Appendix Fig. 1. Five Identified components of heat vulnerability.   
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Appendix Table 2 
Initial variables selected based on the literature review of heat vulnerability assessment*.  

HVI 
Component 

Classification Sub-classification Variables A B C D E F G H I J K L M 

Exposure environ hazard climate & 
weather 

Air temperture (Dbt / Wbt 
/ Extrmer Heat wave / 
Modeled)  

O O  O    O   O O 

Exposure environ hazard climate & 
weather 

Land Surface Temp (LST; 
night/day)   

O O  O O O      

Exposure environ hazard air quality Air quality, PM2.5             O 
Exposure environ hazard air quality Air quality ozone             O 
Exposure built 

environment 
greenry & 
vegetation 

% Imperviousness surface   O   O        

Exposure built 
environment 

greenry & 
vegetation 

% Roof cover material 
(green & gray)  

O            

Exposure built 
environment 

housing density Housing density  O    O        

Exposure built 
environment 

urban form Urban Canyon Ratio (HW 
ratio)              

Exposure built 
environment 

urban form Avg building height              

Exposure built 
environment 

urban form Sky View Factor (BVFs & 
TVFs)              

Exposure built 
environment 

urban form Street orientation              

Exposure built 
environment 

urban form % Building cover ratio 
(BCR)              

Exposure built 
environment 

urban form % Floor-area ratio (FAR)              

Exposure built 
environment 

greenry & 
vegetation 

% Nongreen space / nearby 
green space (std dev) 

O   O     O O O O O 

Exposure built 
environment 

greenry & 
vegetation 

Normalized difference 
built-up index (NDBI)        

O      

Exposure built 
environment 

greenry & 
vegetation 

Normalized difference 
vegetation index (NDVI)    

O  O O O    O  

Exposure built 
environment 

landuse & 
landcover 

Vegetation cover   O O O      O   

Exposure built 
environment 

landuse & 
landcover 

Developed land cover     O      O   

Exposure built 
environment 

landuse & 
landcover 

Material index (light 
materials)     

O  O       

Sensitivity socoeconomic poverty % Residents below the 
poverty line 

O O  O O O  O O O O O O 

Sensitivity socoeconomic employment % Unemployment   O    O       
Sensitivity socoeconomic education % Education (without 

highschool diploma) 
O O O  O  O O O  O O O 

Sensitivity socoeconomic income % Households income / 
Rental housing cost  

O   O O O O      

Sensitivity socoeconomic gender % Females head of 
household   

O     O      

Sensitivity socoeconomic poverty Housing value (median)      O        
Sensitivity demographic age % Population age 65 or 

older 
O O O O O O O O O O O O O 

Sensitivity demographic age % Young population below 
5  

O O  O  O      O 

Sensitivity demographic population 
density 

Population density   O  O        O 

Sensitivity demographic race & ethinicity % Race (Non-white / Non- 
African)  

O O O O O  O O O O O O 

Sensitivity social isolation minority % People living alone (all / 
elderly pop) 

O O O O  O   O O O O O 

Sensitivity social isolation language 
isolation 

% Linguistically isolated 
households 

O O    O    O    

Sensitivity social isolation minority % Households with seven 
or more residents      

O        

Sensitivity social isolation minority % Single family unit / 
detached homes  

O    O        

Sensitivity health condition pre-existing 
medical 
condition 

% Diagnosed with diabetes 
(or others) 

O O       O O O O O 

(continued on next page) 
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Appendix Table 2 (continued ) 

HVI 
Component 

Classification Sub-classification Variables A B C D E F G H I J K L M 

Sensitivity health condition pre-existing 
medical 
condition 

% People with disabilities      O        

Sensitivity health condition pre-existing 
medical 
condition 

% People with mental 
health  

O O           

Adaptive 
capacity 

home amenity air conditioning 
prevalence 

% Homes with no air 
conditioning / central air 
conditioning  

O O O O    O O  O  

Adaptive 
capacity 

neighborhood 
stability 

buidling & 
housing quality 

% Residents changed 
households      

O        

Adaptive 
capacity 

neighborhood 
stability 

buidling & 
housing quality 

% Vacant households      O        

Adaptive 
capacity 

neighborhood 
stability 

buidling & 
housing quality 

% Year house built 
(median)      

O        

Adaptive 
capacity 

healthcare 
access 

medical 
resources 

Nursing home bed count             O 

Adaptive 
capacity 

healthcare 
access 

medical 
resources 

Access to medical services 
(Proximity to hospitals)       

O       

Adaptive 
capacity 

healthcare 
access 

healthcare 
system 

Access to communication 
technologies       

O       

Adaptive 
capacity 

healthcare 
access 

medical 
resources 

Health insurace coverage O             

Adaptive 
capacity 

mobility transporation Households without 
vehicle   

O          O 

Adaptive 
capacity 

accessbility to 
resources 

Proximity to 
green space 

Proximity to water bodies              

Adaptive 
capacity 

accessbility to 
resources 

Proximity to 
green space 

Proximity to cool shelters   O       O    

Adaptive 
capacity 

accessbility to 
resources 

Proximity to 
green space 

Proximity to public 
transportation/major road               

* A - Aubrecht and Ozceylan (2013); B - Sharma et al. (2018); C - Prudent et al. (2016); D - Harlan et al. (2013); E - Harlan et al. (2006); F - Uejio 
et al. (2011); G - Inostroza et al. (2016); H - Johnson et al. (2012); I - Reid et al. (2012); J - Bradford et al. (2015); K - Maier et al. (2014); L - Chuang and 
Gober (2015); M - Christenson et al. (2017).  

Appendix Table 3 
SLM specification (direct/indirect/total coefficient): All level – Energy Budget.***   

Delta-Method      

dy/dx std.err. z P > |z| [95% conf. interval] 

Direct       
comp1 0.76 0.23 3.39 0.00 0.32 1.21 
comp2 0.45 0.58 0.76 0.45 − 0.70 1.59 
comp3 − 0.48 0.47 − 1.02 0.31 − 1.39 0.44 
comp4 0.91 0.52 1.76 0.08 − 0.10 1.93 
comp5 1.16 0.62 1.87 0.06 − 0.06 2.37 
hot & cold      

hot spot − 3.20 1.54 − 2.08 0.04 − 6.21 − 0.19 
cold spot − 0.58 1.83 − 0.32 0.75 − 4.17 3.01 

Indirect       
comp1 2.40 0.70 3.42 0.00 1.02 3.78 
comp2 1.40 1.85 0.75 0.45 − 2.23 5.03 
comp3 − 1.49 1.46 − 1.02 0.31 − 4.36 1.38 
comp4 2.87 1.60 1.79 0.07 − 0.27 6.01 
comp5 3.63 1.98 1.84 0.07 − 0.24 7.51 
hot & cold      

hot spot − 10.04 5.06 − 1.98 0.05 − 19.96 − 0.12 
cold spot − 1.82 5.79 − 0.31 0.75 − 13.16 9.52 

total       
comp1 3.17 0.90 3.51 0.00 1.40 4.93 
comp2 1.85 2.44 0.76 0.45 − 2.93 6.62 
comp3 − 1.97 1.93 − 1.02 0.31 − 5.75 1.81 
comp4 3.78 2.11 1.80 0.07 − 0.34 7.91 
comp5 4.79 2.58 1.86 0.06 − 0.26 9.84 
hot & cold      

hot spot − 13.23 6.53 − 2.03 0.04 − 26.04 − 0.43 
cold spot − 2.40 7.62 − 0.31 0.75 − 17.32 12.53  

*** Comp1(Chronic disease), comp2 (Heat exposures) comp3(Social isolation) comp4(Street features) comp5(AC-prevalence).  
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Appendix Table 4 
SLM specification (direct/indirect/total coefficient): High level – Energy Budget***.   

Delta-Method      

dy/dx std.err. z P > |z| [95% conf.interval] 

Direct       
comp1 0.47 0.37 1.28 0.20 − 0.25 1.19 
comp2 3.07 1.07 2.86 0.00 0.97 5.17 
comp3 − 0.84 0.77 − 1.10 0.27 − 2.35 0.66 
comp4 2.29 0.93 2.47 0.01 0.47 4.10 
comp5 0.34 1.03 0.33 0.74 − 1.68 2.36 

Indirect       
comp1 1.62 1.24 1.31 0.19 − 0.80 4.05 
comp2 10.64 4.29 2.48 0.01 2.23 19.04 
comp3 − 2.93 2.71 − 1.08 0.28 − 8.25 2.39 
comp4 7.94 3.31 2.40 0.02 1.45 14.43 
comp5 1.19 3.54 0.33 0.74 − 5.75 8.12 

Total       
comp1 2.09 1.59 1.31 0.19 − 1.03 5.21 
comp2 13.70 5.21 2.63 0.01 3.48 23.92 
comp3 − 3.78 3.46 − 1.09 0.28 − 10.57 3.01 
comp4 10.23 4.13 2.48 0.01 2.14 18.32 
comp5 1.53 4.57 0.33 0.74 − 7.42 10.48  

*** Comp1(Chronic disease), comp2 (Heat exposures) comp3(Social isolation) comp4(Street features) comp5(AC-prevalence).  

Appendix Table 5 
SLM specification (direct/indirect/total coefficient): Low level – Energy Budget***.   

Delta-Method      

dy/dx std.err. z P > |z| [95% conf. interval] 

Direct       
comp1 0.73 0.50 1.47 0.14 − 0.24 1.71 
comp2 − 0.21 1.03 − 0.20 0.84 − 2.22 1.81 
comp3 0.02 0.99 0.02 0.99 − 1.92 1.96 
comp4 − 0.46 0.92 − 0.49 0.62 − 2.26 1.35 
comp5 − 0.16 1.44 − 0.11 0.91 − 2.98 2.66 

Indirect       
comp1 2.05 1.39 1.48 0.14 − 0.66 4.77 
comp2 − 0.58 2.88 − 0.20 0.84 − 6.22 5.06 
comp3 0.05 2.78 0.02 0.99 − 5.39 5.49 
comp4 − 1.28 2.70 − 0.47 0.64 − 6.58 4.02 
comp5 − 0.44 4.05 − 0.11 0.91 − 8.37 7.49 

Total       
comp1 2.79 1.85 1.51 0.13 − 0.84 6.41 
comp2 − 0.78 3.90 − 0.20 0.84 − 8.44 6.87 
comp3 0.07 3.76 0.02 0.99 − 7.31 7.45 
comp4 − 1.73 3.62 − 0.48 0.63 − 8.82 5.36 
comp5 − 0.59 5.48 − 0.11 0.91 − 11.34 10.16  

*** Comp1(Chronic disease), comp2 (Heat exposures) comp3(Social isolation) comp4(Street features) comp5(AC-prevalence). 

References 

Abatzoglou, J T, 2013. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131. 
Aminipouri, M., Knudby, A., Ho, H.C., 2016. Using multiple disparate data sources to map heat vulnerability: Vancouver case study. Can. Geogr. 60 (3), 356–368. 
Anderson, G.B., Bell, M.L., Peng, R.D., 2013. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 

121 (10), 1111–1119. 
Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon, S., Lyon, R., Ogale, A., Vincent, L., Weaver, J., 2010. Google street view: capturing the world at street level. 

Computer 43 (6), 32–38. 
Anselin, Luc, 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agric. Econ. 27 (3), 247–267. 
Aubrecht, C., Ozceylan, D., 2013. Identification of heat risk patterns in the U.S. National Capital Region by integrating heat stress and related vulnerability. Environ. 

Int. 56, 65–77. 
Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., 2014. Climate change 2014 

impacts, adaptation, and vulnerability part B: Regional aspects: Working group II contribution to the fifth assessment report of the intergovernmental panel on 
climate change. In: Climate Change 2014: Impacts, Adaptation and Vulnerability: Part B: Regional Aspects: Working Group II Contribution to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 1–1820. 

Bernard, J., Bocher, E., Petit, G., Palominos, S., 2018. Sky view factor calculation in urban context: computational performance and accuracy analysis of two open and 
free GIS tools. Climate 6 (3), 60. 

Bradford, K., Abrahams, L., Hegglin, M., Klima, K., 2015. A heat vulnerability index and adaptation solutions for Pittsburgh, Pennsylvania. Environ. Sci. Technol. 49 
(19), 11303–11311. 

Y. Kim et al.                                                                                                                                                                                                            

http://refhub.elsevier.com/S2212-0955(23)00211-0/opt0ib9O4apDQ
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0010
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0015
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0015
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0020
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0020
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0025
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0030
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0030
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0035
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0035
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0035
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0035
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0040
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0040
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0050
http://refhub.elsevier.com/S2212-0955(23)00211-0/rf0050


Urban Climate 51 (2023) 101617

23
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