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Significance

Exposure to co-occurrence of air 
pollution and heat extremes is 
likely to induce amplified 
damages to both human health 
and ecosystem. This study 
identifies the relationship 
between co-occurrence of heat 
wave and O3 pollution in China 
and large-scale climate patterns, 
which offers preseasonal hints. 
The robustness of the findings is 
demonstrated with both 
statistical analysis and numerical 
coupled experiments. The results 
could help the government to 
take actions in advance to 
mitigate damages.
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Large-scale climate patterns offer preseasonal hints on 
the co-occurrence of heat wave and O3 pollution in China
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Heat waves and air pollution extremes exert compounding effects on human health 
and food security and may worsen under future climate change. On the basis of 
reconstructed daily O3 levels in China and meteorological reanalysis, we found that 
the interannual variability of the frequency of summertime co-occurrence of heat 
wave and O3 pollution in China is regulated mainly by a combination of springtime 
warming in the western Pacific Ocean, western Indian Ocean, and Ross Sea. These 
sea surface temperature anomalies impose influences on precipitation, radiation, 
etc., to modulate the co-occurrence, which were also confirmed with coupled chem-
istry–climate numerical experiments. We thus built a multivariable regression model 
to predict co-occurrence a season in advance, and correlation coefficient could reach 
0.81 (P < 0.01) for the North China Plain. Our results provide useful information 
for the government to take actions in advance to mitigate damage from these syn-
ergistic costressors.

air pollution | heat extremes | joint hazards | climate patterns | seasonal prediction

Heat waves and air pollution are two prominent threats, both of which have been 
reported to cause public health and ecosystem crises, particularly under rapid urbani-
zation and global warming (1, 2). Heat waves, defined as consecutive days of excessively 
high atmosphere-related heat stress (3, 4), adversely influence human health by impact-
ing respiratory and cardiovascular systems. Heat waves are linked with high O3 episodes 
that harm human health and vegetation (5–7). In warm seasons, heat waves and extreme 
O3 events often occur simultaneously due to common driving meteorological condi-
tions, i.e., stagnant high-pressure systems that favor accumulation of heat and O3 
precursors (8). Besides, complex chemistry–climate feedbacks through biogenic emis-
sions (source) and uptake by plants (sink) could exacerbate co-occurrence of heat wave 
and O3 extremes (9). It is imperative to understand driving factors for the co-occurrence 
of heat and O3 extremes, as accumulating evidence suggests amplified health outcomes 
beyond the sum of individual effects (10–12). Analitis et al. (13) reported that the 
number of daily deaths during heat wave episodes was 54% higher on high O3 days 
compared with low O3 days.

Previous studies have linked occurrences of heat waves or O3 extremes, separately, with 
large-scale atmospheric circulation or sea surface temperature (SST) anomalies (14–20). 
For instance, Zhu et al. (17) demonstrated that the frequency and variability of summer-
time heat waves over North America was closely associated with SST anomalies in the 
tropical Atlantic and tropical western Pacific in spring and El Niño–Southern Oscillation 
phase change. Shen and Mickley (21) showed that O3 concentration in Eastern United 
States was linked with warm tropical Atlantic SST and cold northeast Pacific SST, as well 
as positive sea-level pressure (SLP) anomalies over central Pacific and negative SLP anom-
alies over the Atlantic and North America. However, the climate factors modulating the 
co-occurrence of heat and O3 extremes at a regional level remain unclear and had only 
been the subject of limited studies (8, 22–24).

With roughly one-sixth of the world’s population and rapid energy-intensive development, 
China is facing the dual challenge of air pollution and climate change (25, 26). Central and 
Eastern China, especially the North China Plain (NCP), experienced improved PM2.5 air 
quality over past years due to the implementation of the most stringent clean air policy, but 
now suffers from largest increases in summertime O3 exposure (27). O3 concentrations in 
the NCP enhanced at almost twice the average pace across China (28). An amplified upward 
trend of the joint occurrences of heat and O3 extremes has been identified in China over 
2013 to 2020 (29). Understanding the driving climate factors for its interannual variability 
would contribute to long-term planning of control of costressors. Characterizing interannual 
variability also enables prediction which could allow sufficient time for mitigation of the 
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interactive damages from joint exposure (21, 30–33). Previously, 
we demonstrated the possibility of seasonal prediction of wintertime 
aerosol pollution in India (34). Considering the strong linkages 
between O3 level and climate patterns, we argue here that it may 
also be possible to predict co-occurrence of heat waves and O3 
pollution, potentially up to several years in advance, considering 
the active efforts in developing reliable seasonal (months ahead) and 
even longer prediction of climate variability (35).

In this study, we aim to identify leading patterns that control 
the spatiotemporal variability of occurrence frequency (days in a 
year) of joint heat wave and O3 pollution events (HWOP). We 
focus on Central and Eastern China (17.5°N to 47.5°N, 98°E to 
125°E), where over 80% Chinese population reside and 
co-occurrences of HWOP events are prominent. Climate drivers 
are identified by empirical orthogonal function (EOF), which 
decomposes historical spatiotemporal variations of HWOP fre-
quency that inferred with atmospheric reanalysis and reconstructed 
daily O3 datasets. Findings from statistical analyses are further 
supported by numerical model experiments using the state-of-the-art 
Community Earth System Model version 2.1.3 (CESM v2.1.3). 
Encouraged by the robustness of the identified teleconnections 
between co-occurrence events and SST anomalies, we further build 
a regression-based statistical model to predict summertime HWOP 
a season in advance, improving our capability in the management 
of these important health and vegetation costressors.

Results

Spatial Distribution and Interannual Variation of HWOP 
Frequency. Fig. 1A presents the mean frequency of co-occurrence 
of HWOP events in summer over 2005 to 2021. We observe 
extensive high value (>8  d/y) in the NCP, where both O3 
pollution and heat waves have been reported increasingly 

intense and frequent (36–40). Relatively lower frequencies with 
~4 d/y appear in the Yangtze River Delta and Sichuan Basin. 
We notice that co-occurrence happens predominately (>80%) 
on heat wave days, while the share in all O3 pollution days 
is ~50 % (SI  Appendix, Fig.  S1). Although these proportions 
change with the used thresholds, we find consistently dominant 
role of heat waves in co-occurrence (SI Appendix, Fig. S2). The 
total frequency of HWOP for the study area (Fig. 1A) exhibits 
notable interannual variability (Fig. 1 B and C). Relatively higher 
frequencies occur in 2005, 2006, 2009, 2010, 2012, 2017, and 
2019, while lower values appear in 2008, 2014, and 2015, 
partially due to relatively lower air temperature (SI Appendix, 
Fig. S3). Detrended frequencies empirical mode decomposition 
(EMD in Fig. 1B) show a different variation from the original 
one (ori in Fig. 1B) after 2013 due to the implementation of 
Air Pollution Prevention and Control Action Plan (26). Li et al 
(28) argued that anthropogenic emission contributed negatively 
to O3 anomalies over 2013 to 2016 but positively over 2017 to 
2019, which is in line with our detected and removed signal of 
anthropogenic emissions.

Dominant Modes of HWOP Frequency.  EOF analysis on 
detrended monthly HWOP frequency over 2005 to 2021 suggests 
that the first three modes contribute 36%, 8%, and 6% to the 
total variance (SI  Appendix, Fig.  S4). The significance test of 
the EOF eigenvalues confirms that the first three patterns are 
significantly separated. Considering the lower contributions of 
other modes, here we focus only on the first three modes. The 
spatial distribution of EOF1 shows a dipole feature between 
northern and southern regions, with negative values in the NCP 
but positive values in the Yangtze River Basin (YRB) (Fig. 2A). The 
corresponding principal component (PC) of EOF1 (PC1) exhibits 
strong interannual variation, with lower values over 2013 to 2015, 

A B

C

Fig. 1. Spatial distribution and temporal variation of HWOP frequency. (A) Spatial distribution of mean HWOP frequency in summer (days/year) over 2005 
to 2021 in Central and Eastern China. (B) Interannual variation of original (blue line) and detrended (red line) HWOP frequencies (# per month) in Central and 
Eastern China. (C) Intermonthly variation of original (blue bars) and detrended (red bars) HWOP frequencies (# per month) in Central and Eastern China. Pink 
rectangle denotes areas of the NCP, while the area inside the domain represents Central and Eastern China.D
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but higher values in other years (Fig. 2D). We also find opposite 
values between June and July-August, which is associated with the 
location of the rain belt in summer in Central and Eastern China. 
Rain belt is commonly located in the YRB (~ 25°N to 30°N) in 
June in Eastern China, yet Northern China experiences sunny 
and hot weather at the same time (SI Appendix, Fig. S5). As East 
Asia Summer Monsoon (EASM) marches northwards, rain season 
starts in Northern China, while continuous hot weather begins 
in the YRB (SI  Appendix, Fig.  S5) (41, 42). March of EASM 
and associated movement of rain belt cause the north–south shift 
of weather, which is represented by the toggling of positive and 
negative PC values. EOF2 shows positive values in most regions 
(Fig. 2B), except to the southwest of the NCP, indicating that 
sunny and hot weather is dominant for PC2, particularly in 
Beijing, Tianjin, Hebei, and Inner Mongolia. The PC of EOF2 
mode (PC2) presents generally negative values before 2017 but 
positive values after 2017 (Fig.  2E). EOF3 displays a positive 
sensitivity extending from North China to Northeast China but 
negative responses in other areas (Fig. 2C). The variation of PC3 
is similar to that of PC2, with more positive values in recent years 
(Fig. 2F).

Warming in the Western Pacific Ocean and Excited Pacific 
Subtropic High Dipole. To identify associated atmospheric patterns 
with the first three dominant modes, regression of anomalies of 
SLP, Z500, and wind on corresponding levels for each PC was 
performed. For PC1, SLP shows positive anomalies in land with 
the center (EASLP, 40°N to 55°N, 110°E to 130°E) located in 
Northeastern China (yellow box in Fig.  3A). This enhanced 
pressure center is significantly associated with PC1 (r = 0.63, P < 
0.01). Wind anomalies around the enhanced pressure center allow 

more cold air to flow from higher latitudes to the NCP, creating 
unfavorable conditions for the occurrence of high temperature. 
Pacific Subtropical High (PSH, also known as Hawaiian High) 
is the major system that affects summertime weather conditions 
in China, and it is conventionally measured by Z500 (43). 
Regression of PC1 on Z500 (Fig.  3B) reveals a dipole mode of 
PSH with weakened Western Pacific Subtropic High (WPSH, 
17°N to 25°N, 120°E to 160°E) but strengthened North Pacific 
Subtropic High (NPSH, 42°N to 50°N, 175°E to 165°W), both 
of which significantly correlate with PC1 (r = 0.70 for NPSH, r = 
−0.53 for WPSH, P < 0.01). Such a spatial combination of air 
pressure anomalies modulates winds northward and southward 
of 30°N, leading to enhanced moisture transported to the NCP 
but weakened to the YRB. As a result, precipitation is enhanced 
in the NCP but decreased in the YRB (SI Appendix, Fig. S7A). 
Precipitation/clouds regulate downward shortwave radiation 
(SWD) on the ground (SI Appendix, Fig. S7D), reduce surface 
temperature, and suppress O3 formation. We thus observe reduced 
HWOP frequency in the NCP but enhanced HWOP frequency in 
the YRB. The correlation coefficient between PC1 and this dipole 
pattern (difference between NPSH and WPSH) is 0.72 (P < 0.01).

The correlation map for spring SST anomalies resembles that for 
summer (SI Appendix, Fig. S6), suggesting that springtime SST 
could offer possibility of seasonal prediction. As shown in Fig. 4A, 
SST anomalies positively correlate with PC1 in the Northern hem-
isphere (Fig. 4A), especially in the western Pacific Ocean. We define 
SSTwp as the SST of the western Pacific Ocean (5°N to 25°N, 110°E 
to 160°E) region and find a strong connection between springtime 
SSTwp and PC1-associated summertime atmospheric patterns (0.64, 
0.71, −0.49, and 0.72 for EASLP, NPSH, WPSH, and NPSH-WPSH, 
respectively; P < 0.01). Regression of SST in spring and summer 

Fig. 2. Spatial and temporal variations of the first three leading modes inferred by EOF analysis. Spatial patterns of HWOP frequency of (A) EOF1, (B) EOF2, and 
(C) EOF3. Intermonthly variation of HWOP frequency of (D) PC1, (E) PC2, and (F) PC3. PC values represent average over the entire domain.
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on PCs (SI Appendix, Fig. S8) reveals the process of how springtime 
SST anomalies affect atmospheric patterns and HWOP frequency 
in summer. The SST anomalies in spring mainly occur in the low 
latitudes of the western Pacific Ocean (SI Appendix, Fig. S8A). With 
the northward movement of the direct solar point and under the 
influence of the northward current, the SST anomalies in summer 
appear in the high latitudes of the Pacific Ocean (SI Appendix, 
Fig. S8B). Warm SST in the northern Pacific Ocean enhances anti-
cyclonic circulation anomalies there and causes easterly winds from 
the North Pacific to the NCP (SI Appendix, Fig. S9A), which pro-
vides abundant moisture for precipitation (44). Composite differ-
ences confirm that warming SST of the western Pacific Ocean 
during March, April, and May (MAM) contributes positively to 
higher HWOP frequency in summer (SI Appendix, Fig. S10).

Warming in the Western Indian Ocean and Associated Northward 
WPSH. For PC2, SLP exhibits negative values in the middle and 
high latitudes of the Eurasian continent, with the center (NASLP, 
55°N to 62°N, 78°E to 95°E) located in western Siberia (Fig. 3C). 
PSH is enhanced over the ocean and positive values extend westward 
(Fig. 3C). An intensified pressure center (EA500, 43°N to 50°N, 113°E 
to 125°E) appears in Northeastern China, which can be considered 
as the northward shift of the WPSH (Fig. 3D). As a result, Central 
and Eastern China, especially northern regions, are under the control 
of a high-pressure system, which creates favorable conditions (e.g., 
sunny weather and low wind speeds) for accumulation of heat and O3 
precursors (45). Both weakened center of SLP and intensified center 
of Z500 correlate with PC2, with correlation coefficients of –0.44 and 
0.39 (P < 0.05), respectively.

1 m s-1 2 m s-1

2 m s-1

1 m s-1 2 m s-1

1 m s-1

A

C D

B

E F

JJA-SLP

JJA-SLP

JJA-SLP

Fig. 3. Regression of atmospheric features on leading modes. (A) SLP anomaly regressed on PC1; the mean anomaly of SLP within the yellow box (A) is defined 
as EASLP. (B) Geopotential height at 500 hPa anomaly regressed on PC1; the mean anomaly of geopotential height within the yellow box (B) is defined as NPSH, 
and the mean anomaly of geopotential height within the green box (B) is defined as WPSH. (C) SLP anomaly regressed on PC2; the mean anomaly of SLP within 
the green box (C) is defined as NASLP. (D) Geopotential height at 500 hPa anomaly regressed on PC2; the mean anomaly of geopotential height within the yellow 
box (D) is defined as EA500. (E) SLP anomaly regressed on PC3. (F) Geopotential height at 500 hPa anomaly regressed on PC3. Gray dots denote areas with 
significant correlation (P < 0.05).
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A

B

C

Fig. 4. Correlations between the first three modes and springtime SST. (A) PC1–MAM SST correlation; the mean SST within the yellow box is defined as SSTwp. (B) 
PC2–MAM SST correlation; the mean SST within the yellow box is defined as SSTwi. (C) PC3–MAM SST correlation; the mean SST within the yellow box is defined 
as SSTRoss. Positive values mean rising SST leads to increased HWOP frequency and negative values mean rising SST leads to reduced HWOP frequency. Black 
dots denote areas with significant correlation (P < 0.05).D
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We find that SST in the western Indian Ocean (40°E to 60°E, 
10°S to 10°N) is associated with PC2 (Fig. 4B), and we define 
SSTwi as the average SST within this region. The correlation 
coefficient between SSTwi and PC2 is 0.42 (P < 0.01). The Indian 
Ocean Dipole (IOD) is an irregular oscillation of SSTs and related 
atmospheric circulation in the Indian Ocean, and the strength 
of IOD is commonly represented by the difference in SST 
between the west (50°E to 70°E, 10°S to 10°N) and southeast 
(90°E to 110°E, 10°S to 0°) Indian Ocean (the dipole mode index, 
DMI). Both DMI and SSTwi are highly correlated with atmos-
pheric patterns (i.e., 0.60 and 0.63 for EA500, respectively;  
P < 0.01), suggesting potentially important influences on HWOP 
in Central and Eastern China. The IOD is able to stimulate 
easterly acceleration over the tropical Indian Ocean (46), which 
may enhance the crossequatorial flows (CEFs). Anomalous CEFs 
increase the westerly flow over the eastern Indian Ocean and 
western Pacific (SI Appendix, Fig. S9B) and further enhance the 
anticyclonic anomaly circulation from North China to Japan 
(Fig. 3E), forming the northward extremity of the WPSH (47). 
Although the found SST pattern in the Indian Ocean is not a 
typical IOD mode, the intensified DMI by increased SSTwi could 
exert similar influences on atmospheric circulation anomalies as 
IOD.

Warming in the Ross Sea and Associated Southward WPSH. For 
PC3, SLP shows an increasing tendency over land with higher 
values located on ~60°N (Fig.  3E). Pressure exhibits opposite 
patterns around 30°N, with positive values in the South but 
negative values in the North (Fig. 3F). This is associated with 
the southward shift of the WPSH. Southward WPSH may 
weaken East Asian monsoon and reduce moisture transport to 
northern regions. As a result, we observe significantly increased 
precipitation/decreased SWD in the middle regions of Central 
and Eastern China but decreased precipitation/increased SWD 
in Northeast China (SI Appendix, Fig. S7E). This is consistent 
with the spatial distribution of PC3 that the signal is negative 
in most areas of Central and Eastern China but positive in the 
northeastern regions (Fig. 2C). Areas with significant correlation 
between PC3 and springtime SST are located mainly in the mid-
high latitudes of the Southern hemisphere (Fig. 4C). Consistently, 
Ledley and Huang (48) reported a statistically significant 
relationship between Ross Sea warming and equatorial ocean 

warming. We select SST of the Ross Sea (SSTRoss, 70S to 80S, 
158W to 170E) as the signal of ocean warming of the Southern 
hemisphere. The correlation coefficient between SSTRoss and PC3 
reaches 0.48 (P < 0.01). Springtime SST anomalies propagate 
northward from the Antarctic region, resulting in widespread 
increases in SST throughout the Southern hemisphere and the 
Indian Ocean in summer (SI Appendix, Fig. S8F). SST anomalies 
over these regions enhance westerly wind at 30°N (SI Appendix, 
Fig. S9C) and induce a weakened WPSH in East Asia, which is 
unfavorable for moisture transport from the low-latitude regions 
to North China (49).

Numerical Model Verification Using CESM Experiments. 
Considering the model deficiency in capturing long-term observed 
variations of SST, we imposed these SST anomalies in the CESM2 
model to verify proposed influences of warming in the western 
Pacific Ocean, western Indian Ocean, and Ross Sea. As shown in 
Fig. 5, simulated responses of HWOP to SST anomalies are generally 
consistent with those from EOF decomposition, confirming the 
observed relationship between SST anomalies and HWOP frequency 
in Central and Eastern China. SSTwp anomalies enhance easterly 
wind in regions around 30°N and increase moisture transport to the 
NCP, leading to suppressed SWD (SI Appendix, Fig. S11A), reduced 
air temperature, and lower O3 (SI Appendix, Fig. S11 D and G). We 
imposed only changes in SSTs of the western Pacific Ocean (5°N to 
25°N, 110°E to 160°E, Fig. 4A) in the simulation, yet warming or 
cooling associated with PC1 is widespread. This causes strengthened 
NPSH located to the west in the simulation (SI Appendix, Fig. S12). 
As a result, anomalous easterly wind over China partially moves 
southward, causing insufficient moisture transport to the NCP but 
increased moisture transport to the southern region (SI Appendix, 
Fig. S12A). Although we find shifted responses to some extent in 
the southern region, our simulation results confirm that warming 
in the west Pacific Ocean could excite Pacific Subtropic High 
dipole and lead to corresponding responses of HWOP frequency. 
In contrast, SSTwi anomalies weaken monsoon in East Asia, resulting 
in warming land and increasing O3 concentration, especially in the 
NCP (SI Appendix, Fig. S11 E and H), which is in line with the 
spatially positive values of EOF2 in Fig. 2B. SSTRoss anomalies excite 
an anticyclone enhancement in the NCP, which are favorable for 
warm and dry conditions (SI Appendix, Fig. S11 F and I).

Fig. 5. CESM-simulated responses of HWOP frequency. CESM-simulated responses of HWOP frequency to springtime (A) SSTwp anomaly, (B) SSTwi anomaly, 
and (C) SSTRoss anomaly.
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Statistical Seasonal Prediction. Based on these lagged influences 
of SSTs on HWOP, we developed an multiple linear regression 
(MLR) model incorporating springtime SSTwp, SSTwi, DMI, and 
SSTRoss through the following equation:

HWOP= a0+a1SSTwp+a2SSTwi+a3DMI+a4SSTRoss,

where a0, a1, a2, a3, and a4 denote the coefficients that determined 
through the multivariable regression procedure. To assess the sig-
nificance of statistical models with respect to effectiveness and 
overfitting potential, models constructed using 15 combinations 
of these four predictors were crosscompared using the Akaike 
information criterion [AIC, Sakamoto et al. (50)]. We find that 
the model incorporating all the four predictors performs best with 
the lowest AIC value of 338.30 (SI Appendix, Table S1). Our built 
model is able to foresee HWOP frequency a season ahead, and 
determination coefficients reach 0.56 (P < 0.01) for prediction in 
Central and Eastern China and 0.65 (P < 0.01) for the NCP 
region (Fig. 6 A and C). We also construct predictions at monthly 
(June, July, and August, JJA) scale, and reasonably moderate per-
formances are also yielded (Fig. 6 B and D) with r2 values of 0.37 
(P < 0.01) and 0.53 (P < 0.01), respectively.

Discussion

The link between climate patterns and heat waves or O3 pollution in 
China has been well documented, yet the understanding of their joint 
occurrence has received less attention. In this study, we identified 

three leading modes of spatiotemporal distribution of HWOP fre-
quency in China. We linked these three modes with Pacific Subtropic 
High dipole, northward WPSH, and southward WPSH, through 
which precipitation and SWD are modulated (SI Appendix, Fig. S7) 
to affect HWOP frequency. Although the formation of O3 pollution 
can be affected by biogenic emissions of VOCs (BVOCs) (9) and 
drought conditions in the previous year are likely to suppress BVOCs 
(SI Appendix, Figs. S13 and S14), HWOP frequency is mainly con-
trolled by precipitation in the same year considering a larger correla-
tion between HWOP and soil water for the same year (SI Appendix, 
Figs. S15 and S16). Further, we recognized the important roles of 
springtime SST anomalies in the western Pacific Ocean, the Indian 
Ocean, and the Ross Sea. The SST influences on HWOP were exam-
ined with both statistical analysis and SST-driven numerical simula-
tions. A statistical model was also established accordingly to foresee 
co-occurrence of heat and O3 extremes at least a season in advance.

Using 15 y of surface observations, Schnell and Prather (8) 
revealed features of co-occurrence of temperature, O3, and par-
ticulate matter extremes in the United States. Despite that the 
compounding effects of heat and O3 extremes on vulnerable pop-
ulation groups have been realized, the characteristics and predic-
tive potential have not been well understood in China. One major 
reason is the lack of long-term daily observations of ground-level 
O3 concentrations. We overcome such limitation by reconstruct-
ing a daily O3 dataset using a sophisticated machine learning 
approach. Our results are also affected by our definition of 
extremes based on absolute values, and we examined how alter-
native absolute thresholds and percentile thresholds would make 

A B

C D

Fig. 6. Multivariable regression modeling. Time series of annual (A) and monthly (B) HWOP frequency anomaly in Central and Eastern China. Time series of 
annual (C) and monthly (D) HWOP frequency anomaly over the NCP. Observations are represented in blue. Predictions using the MLR model are indicated in red.
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a difference. As shown in SI Appendix, Fig. S17, using alternative 
absolute thresholds yielded similar interannual variations. 
Although using percentile thresholds changes spatial distribution 
of HWOP frequency, relatively consistent interannual variations 
were found for our concerned NCP region where residents are 
exposed to high co-occurrence of heat waves and O3 pollution.

Under a warming climate, heat waves and O3 pollution are pro-
jected to become more intense over most global land areas with greater 
maximum temperatures until the end of this century (22). The sum-
mer of 2022 witnessed record-breaking heat waves in places around 
the world, including megacities, where local emissions are substantial 
to form O3 pollution. How to avoid the harm by these synergistic 
costressors is a challenge, and our results have important operational 
implications. Daily global SSTs observed by satellite and in situ plat-
forms, such as buoys and ships, are being offered continuously by 
multiple agencies, such as National Oceanic and Atmospheric 
Administration. These operational data in spring could be substituted 
into the statistical model we built to predict potential HWOP 
extremes in the following summer. This allows a season or several 
months in advance for Ministry of Ecology and Environment of 
China (MEE) to take actions. If predictions suggest more HWOP 
extremes in the coming summer or months, the MEE could issue 
warnings in their operational services so that agriculture or other 
related sectors or people who are sensitive to these extremes could be 
prepared ahead. The MEE could also optimize their management 
plan for air pollutants and greenhouse gases to face the incoming 
extremes by setting more stringent control targets or organizing 
sources of electricity generation.

The influences of rapidly changing anthropogenic emissions and 
other factors can be further considered in the future to improve 
the capability of our prediction. We also noticed from analysis that 
heat waves play more decisive roles in the co-occurrence. In addi-
tion to reducing emissions of air pollutants to improve air quality, 
controlling emissions of greenhouse gases to slow down or curb 
warming is also vital to reduced exposure to co-occurrence of cos-
tressors. The influences of emission pathways on future changes in 
the joint occurrence of heat waves and O3 pollution are not dis-
cussed in this study, which deserves future explorations. Previously, 
carbon reduction and air pollution control were usually considered 
separately, while comitigation of heat waves and air pollution 
requires a synergy to address this challenge.

Materials and Methods

Daily O3 Datasets. The gridded daily O3 concentrations in China [Zhou et al. 
(51); freely available at https://zenodo.org/record/6507706#.Yo8hKujP13g] 
cover the period of 2005 to 2021 at a spatial resolution of 0.1° × 0.1°. This O3 
dataset was reconstructed with an eXtreme Gradient Boosting (XGBoost) model 
that integrated high-resolution meteorological data, satellite retrievals of trace 
gases, etc., and both crossvalidation and independent validation with historical 
observations of O3 in China confirmed the accuracy. We used this daily dataset 
to identify high O3 days using the ambient air quality standards (GB 3095-2012) 
released by the MEE, which defined polluted days as when daily maximum 8 h 
average (MDA8) O3 concentrations exceeded 160 μg m−3 (52).

Meteorological Reanalysis. We used hourly gridded 2m air temperature 
(T2m) at the same spatial resolution of 0.1° × 0.1° and over the same period of 
2005 to 2021 from the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA5-Land dataset (53, 54) to determine occurrences of heat waves. 
Following the standard set by the China Meteorological Administration, we 
defined occurrences of heat waves when daily maximum T2m exceeds 35 °C 
for at least three consecutive days (55). After days of high O3 and heat waves 
were defined separately, we calculated the frequency (number of days) of their 
co-occurrences (both heat waves and O3 pollution occurred on the same day) 
in each month of summers (JJA) over 2005 to 2021. We then averaged the 

days of co-occurrence in each grid over 2005 to 2021 to obtain the spatial 
distribution of HWOP frequency (days/year) and summed up the number of 
co-occurrence in Central and Eastern China region to derive interannual and 
intermonthly variations (Fig. 1).

To understand the co-occurrence-associated climate factors, we also obtained 
surface variables of monthly SLP, SST, 10m u-component of wind (U10m), and 10m 
v-component of wind (V10m), as well as midtropospheric variables of monthly 
geopotential height (Z500), u-component of wind (U500), and v-component of wind 
(V500) at 500 hPa from the ECMWF ERA5 dataset (53). All of these variables were 
at a spatial resolution of 0.25° × 0.25°.

Statistical Analysis. We adopted EOF analysis to decompose spatiotemporal 
variations of HWOP frequency over 2005 to 2021 in Central and Eastern China. 
We focus on the first three modes, and EOF1, EOF2, and EOF3 were signifi-
cantly separated (56). To remove the impacts of anthropogenic emissions, we 
detrended HWOP frequency using the EMD method for each grid. The EMD 
method decomposes the input spatiotemporal variation into several intrinsic 
mode functions (IMF) and a residue (57). Given the minimum frequency of 
the last IMF, we considered it as the signal of anthropogenic emissions and 
removed it. The signal of anthropogenic emissions includes the impacts of both 
the trends of O3 precursor emissions and changes in aerosols. It was concluded 
that both decreases in PM2.5 and unmitigated emissions of volatile organic-
compounds drove the increase in O3 (28). Regarding the influence of aerosol 
loadings on O3 formation, changes in heterogeneous reactions were found to 
play a more important role than the increase in photolysis rates due to lower 
aerosols (28, 58). We also conducted composite analysis on SST of months when 
high and low HWOP frequencies occurred to confirm the role of SST. The high 
and low HWOP frequencies were defined as those larger than one SD. SST was 
deseasonalized by subtracting its respective monthly mean annual cycles at 
each grid point before composite.

CESM Experiments. CESM v2.1.3 was used to explore how HWOP responds to 
changes in springtime (MAM) SST patterns. The selected component set (comp-
set) was FWHIST, the robustness of which has been validated extensively (59). 
FWHIST was configured with a horizontal resolution of 0.9° × 1.25° and 70 verti-
cal layers. The Community Atmosphere Model version 6 (60) was used to simulate 
atmospheric physics, while the Whole Atmosphere Community Climate Model 
version 6 (61) was used to describe tropospheric, stratospheric, mesospheric, 
and lower thermospheric chemistry. The Data Ocean Geophysical Model (62) was 
used to provide SSTs, which allows the applications of SST anomalies for sensitive 
experiments. Land processes were characterized by the Community Land Model 
version 5 [CLM5, Lawrence et al. (63)], and other selections included the Sea Ice 
Model version 5 (64) for sea ice, the Model for Scale Adaptive River Transport 
(65) for river runoff, the Community Ice Sheet Model Version 2 (66) for land ice, 
and the Stub wave component for wave. Anthropogenic emissions were obtained 
from the Community Emissions Data System (67), while biomass-burning emis-
sions were provided by van Marle et al. (68). Biogenic emissions were calculated 
online using the Model of Emissions of Gases and Aerosols from Nature ver-
sion 2.1 that was incorporated in the CLM5 model (69). Corresponding with 
the decomposed climate modes, four sets of simulations were designed with 
springtime (MAM) SST, namely CESMctrl, CESMwp, CESMwi, and CESMRoss. CESMctrl 
was the control case with monthly varying climatological SST data. For CESMwp, 
CESMwi, and CESMRoss, SST anomalies were applied, respectively, in the west 
Pacific Ocean, the western Indian Ocean, and the Ross Sea in Antarctica, following 
the values obtained from regression analysis. All of these experiments were run 
from January to September 2010 as SST anomaly was smallest in 2010. We 
evaluated the performance of CESM in simulating variations of air temperature 
and O3 concentrations. As shown in SI Appendix, Fig. S18, general variations of 
surface air temperature and O3 concentration were well reproduced by CESMctrl. 
The mean fractional biases (MFBs) and the mean fractional errors (MFEs) meet 
the model performance criteria of within ± 60% for MFB and lower than +75% 
for MFE (70). Considering these biases (61, 71), the simulated results were used 
only to investigate the direction of the response instead of the exact magnitudes.

Data, Materials, and Software Availability. Gridded daily O3 concentrations in 
China data have been deposited in Zenodo (https://zenodo.org/record/6507706#.
Yo8hKujP13g) (51).D
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